Engineering Fe-N 4 Electronic Structure with Adjacent Co-N 2 C 2 and Co Nanoclusters on Carbon Nanotubes for Efficient Oxygen Electrocatalysis.

Autor: Wu M; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.; Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.; Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada., Yang X; Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada., Cui X; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China., Chen N; Canadian Light Source (CLS), 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada., Du L; Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada., Cherif M; Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada., Chiang FK; National Institute of Low-Carbon-and-Clean-Energy, Beijing, 102211, People's Republic of China., Wen Y; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China., Hassanpour A; Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada., Vidal F; Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada., Omanovic S; Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada., Yang Y; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China. ykyang@wtu.edu.cn., Sun S; Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada. shuhui.sun@inrs.ca., Zhang G; Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada. gaixia.zhang@etsmtl.ca.
Jazyk: angličtina
Zdroj: Nano-micro letters [Nanomicro Lett] 2023 Oct 20; Vol. 15 (1), pp. 232. Date of Electronic Publication: 2023 Oct 20.
DOI: 10.1007/s40820-023-01195-2
Abstrakt: Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N 4 electronic structure with adjacent Co-N 2 C 2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N 4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M-N-C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M-N-C catalysts.
(© 2023. Shanghai Jiao Tong University.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje