Boron nitride nanoplate-based improvement of the specificity and sensitivity in loop-mediated isothermal amplification for Vibrio parahaemolyticus detection.

Autor: Li Y; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China., Lin S; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China., Xue Y; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China., Jia Q; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China., Wang Y; Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 266042, Qingdao, China., Xie Y; Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan., Shi C; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of the Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, 266071, Qingdao, China., Ma C; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China. Electronic address: mcp169@163.com.
Jazyk: angličtina
Zdroj: Analytica chimica acta [Anal Chim Acta] 2023 Nov 01; Vol. 1280, pp. 341851. Date of Electronic Publication: 2023 Sep 27.
DOI: 10.1016/j.aca.2023.341851
Abstrakt: Background: Nucleic acid testing based on DNA amplification is gradually entering people's modern life for clinical diagnosis, food safety monitoring and infectious disease prevention. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are the most powerful techniques that have been the gold standard for quantitative nucleic acid analysis. However, the high nonspecific amplification rate caused by the formation of primer dimers, hairpin structures and mismatched hybridization severely restricts their real-world applications. It is highly desirable to explore a way for improving the specificity and sensitivity of PCR and LAMP assays.
Results: In this work, we demonstrated that a nanomaterial boron nitride nanoplate (BNNP), due to its unique surface properties, can interact with the main components of the amplification reaction, such as single stranded primers and Bst DNA polymerase, and increase the thermal conductivity of the solution. As a result, the presence of BNNPs dramatically improved the specificity of PCR and LAMP. And BNNPs maintained the specificity even after five rounds of PCR. Moreover, the sensitivity of LAMP was also enhanced by BNNPs, and the detection limit of BNNP-based LAMP was two orders of magnitude lower than that of classical LAMP. Then the BNNP-based LAMP was applied to detect Vibrio parahaemolyticus in contaminated seafood samples with high specificity and a 10-fold increase in sensitivity.
Significance: This is the first systematic demonstration of BNNPs as a promising additive to enhance the efficiency and fidelity of PCR and LAMP amplification reactions, thereby greatly expanding the application of nucleic acid detection in a wide range of laboratory and clinical settings.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE