Methicillin-Resistant Staphylococcus aureus and Coagulase-Negative Staphylococcus from School Dining Rooms in Argentina.

Autor: González J; Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina.; Laboratorio de Microbiología de los Alimentos, Departamento de Tecnología y Calidad de los Alimentos, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina., Hernandez L; Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina., Tabera A; Laboratorio de Microbiología de los Alimentos, Departamento de Tecnología y Calidad de los Alimentos, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina., Bustamante AV; Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina., Sanso AM; Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina.
Jazyk: angličtina
Zdroj: Foodborne pathogens and disease [Foodborne Pathog Dis] 2024 Jan; Vol. 21 (1), pp. 44-51. Date of Electronic Publication: 2023 Oct 19.
DOI: 10.1089/fpd.2023.0071
Abstrakt: Methicillin-resistant Staphylococcus aureus (MRSA) constitutes an important cause for concern in the field of public health, and the role of the food chain in the transmission of this pathogen and in antimicrobial resistance (AMR) has not yet been defined. The objectives of this work were to isolate and characterize coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS), particularly S. aureus , from school dining rooms located in Argentina. From 95 samples that were obtained from handlers, inert surfaces, food, and air in 10 establishments, 30 Staphylococcus strains were isolated. Four isolates were S. aureus , and the remaining ones ( N  = 26) belonged to 11 coagulase-negative species (CoNS). The isolates were tested for susceptibility to nine antibiotics. The presence of genes encoding toxins ( luk-PV , sea , seb , sec , sed , and see ), adhesins ( icaA , icaD ), and genes that confer resistance to methicillin ( mecA ) and vancomycin ( vanA ) was investigated. The resistance rates measured for penicillin, cefoxitin, gentamicin, vancomycin, erythromycin, clindamycin, levofloxacin, trimethoprim-sulfamethoxazole, and tetracycline were 73%, 30%, 13%, 3%, 33%, 17%, 13%, 7%, and 7% of the isolates, respectively. Seventeen AMR profiles were detected, and 11 isolates were multidrug resistant (MDR). Seven methicillin-resistant Staphylococcus isolates were detected in the hands of handlers from four establishments, two of them were MRSA. Two S. aureus isolates presented icaA and icaD , another one, only icaD . The gene vanA was found in two isolates. In relation to S. aureus , resistance to vancomycin but not to gentamicin was detected. School feeding plays a key role in the nutrition of children, and the consumption of food contaminated with MRSA and vancomycin-resistant S. aureus (VRSA) can be a serious threat to health. In particular, it was detected that the handlers were the source of MRSA, VRSA, MR-CoNS (methicillin-resistant coagulase-negative Staphylococcus ), and MDR isolates. The results obtained indicate that the vigilance of this pathogen in school dining rooms should be extreme.
Databáze: MEDLINE