Autor: |
Müller V; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.; TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria. joerg.feldmann@uni-graz.at., Andrade Costa LC; Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil., Rondan FS; Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil., Matic E; TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria. joerg.feldmann@uni-graz.at., Mesko MF; Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil., Kindness A; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.; University of KwaZulu Natal, School of Chemistry & Physics, Private Bag X54001, Westville Campus, ZA-4000 Durban, South Africa., Feldmann J; TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria. joerg.feldmann@uni-graz.at. |
Abstrakt: |
Per and polyfluoroalkylated substances (PFAS) are common additives in ski waxes for their water repellent characteristic. Abrasion of ski wax leaves PFAS on the snow surface, however, little is known about the distribution and concentration of PFAS in snow and soil due to skiing. In this study we analysed different ski waxes, snowmelts and soil from family skiing areas from Alpine locations using targeted high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) to understand more about PFAS distribution in the environment. In general, we found a very diverse PFAS pattern in the analysed media. PFAS level was higher in skiing areas compared to the non-skiing ones that were used as control. ∑target PFAS ranged between <1.7 ng L -1 and 143 ng L -1 in snowmelt, <0.62 ng g -1 and 5.35 ng g -1 in soil and <1.89 and 874 ± 240 ng g -1 in ski wax samples. Snowmelt was dominated by short-chained PFAS, while soil and wax contained both short and long-chained PFAS. Extractable organic fluorine (EOF) was several orders of magnitude higher for waxes (0.5-2 mg g -1 ) than for soils (up to 0.3 μg g -1 ), while total fluorine (TF) content of the waxes was even higher, up to 31 210 ± 420 μg g -1 . We also showed that the ∑ target PFAS accounts for up to 1.5% in EOF content, showing that targeted LC-MS/MS gives a limited measure of the pollution originated from ski waxes and non-targeted analysis and EOF is necessary for a better overview on PFAS distribution. |