Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria.

Autor: Zheng Y; Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France., Cabassa-Hourton C; Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France., Eubel H; Institute of Plant Genetics, Leibniz Universität Hannover, Germany., Chevreux G; Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France., Lignieres L; Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France., Crilat E; Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France., Braun HP; Institute of Plant Genetics, Leibniz Universität Hannover, Germany., Lebreton S; Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France., Savouré A; Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France.
Jazyk: angličtina
Zdroj: Journal of experimental botany [J Exp Bot] 2024 Feb 02; Vol. 75 (3), pp. 917-934.
DOI: 10.1093/jxb/erad406
Abstrakt: Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.
(© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
Databáze: MEDLINE