Preparation of polyvinyl alcohol/chitosan nanofibrous films incorporating graphene oxide and lanthanum chloride by electrospinning method for potential photothermal and chemical synergistic antibacterial applications in wound dressings.

Autor: Tang WJ; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Zhang JX; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Wen ML; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Wei Y; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Tang TT; Shanghai NewMed Medical Corporation, Shanghai, 611137, China., Yang TT; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Bai HT; College of Economics and Management, Taiyuan University of Technology, Jinzhong, 030600, China., Guo CQ; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Gao X; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Wang ZC; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Xu LD; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China., Liu Y; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China. Electronic address: liu_yang_tai_yuan@163.com., An MW; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi, 030024, China; Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China. Electronic address: meiwen_an@163.com.
Jazyk: angličtina
Zdroj: Journal of the mechanical behavior of biomedical materials [J Mech Behav Biomed Mater] 2023 Dec; Vol. 148, pp. 106162. Date of Electronic Publication: 2023 Oct 09.
DOI: 10.1016/j.jmbbm.2023.106162
Abstrakt: Electrospun fibres have been widely used as skin dressings due to their unique structur. However, due to the lack of intrinsic antimicrobial activity, it is easy for the wound to become infected. Bacterial infection, which leads to chronic inflammation, severely hinders the normal process of skin regeneration. In this study, a polyvinyl alcohol/chitosan (PVA/CS) composite films with chemical sterilization and near-infrared (NIR) photothermal antibacterial activity was fabricated by electrospinning. Graphene oxide (GO), a photosensitiser, was incorporated into the films, and lanthanum chloride (Lacl 3 ) as a chemical antibacterial agent was also doped in the electrospun films. The structure, morphology, mechanical properties, wettability, and antimicrobial and photothermal antibacterial activity of the PVA/CS-based fibre films were investigated. The results showed that the addition of Lacl 3 to the PVA/CS/GO nanofibres (PVA/CS/GO-La) improved the hydrophilicity, tensile strength and resistance to elastic deformation of the nanofibres. The PVA/CS/GO-La12.5 mM sample exhibited the best antibacterial performance, showing high inhibition against Staphylococcus aureus (82% antibacterial efficacy) and Escherichia coli (99.7% antibacterial efficacy). Furthermore, the antibacterial efficacy of the films surface was further enhanced after exposure to NIR light (808 nm, 0.01 W) for 20 min. In addition, the nanofibre films showed no cytotoxicity against human skin fibroblasts (HSFs), indicating its potential application in the field of broad-spectrum antibacterial materials.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE