Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.

Autor: El Omari K; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK., Duman R; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK., Mykhaylyk V; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK., Orr CM; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK., Latimer-Smith M; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK., Winter G; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK., Grama V; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK., Qu F; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.; Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.; Department of Biochemistry, University of Oxford, Oxford, UK., Bountra K; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.; Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK., Kwong HS; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.; Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK., Romano M; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.; Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.; Institute of Biostructures and Bioimaging, IBB, CNR, 80131, Naples, Italy.; Department of Pharmacy, University of Naples 'Federico II', 80131, Naples, Italy., Reis RI; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK., Vogeley L; Charles River Discovery Research Services UK, Chesterford Research Park, Saffron Walden, CB10 1XL, UK.; Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany., Vecchia L; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland., Owen CD; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK., Wittmann S; Department of Biochemistry, University of Oxford, Oxford, UK.; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany., Renner M; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.; Department of Chemistry, Umeå University, 901 87, Umeå, Sweden., Senda M; Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan., Matsugaki N; Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan.; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan., Kawano Y; Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, 679-5148, Japan., Bowden TA; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK., Moraes I; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK., Grimes JM; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK., Mancini EJ; School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK., Walsh MA; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK., Guzzo CR; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil., Owens RJ; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.; The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK., Jones EY; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK., Brown DG; Charles River Discovery Research Services UK, Chesterford Research Park, Saffron Walden, CB10 1XL, UK., Stuart DI; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK., Beis K; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.; Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK., Wagner A; Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK. armin.wagner@diamond.ac.uk.; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK. armin.wagner@diamond.ac.uk.
Jazyk: angličtina
Zdroj: Communications chemistry [Commun Chem] 2023 Oct 12; Vol. 6 (1), pp. 219. Date of Electronic Publication: 2023 Oct 12.
DOI: 10.1038/s42004-023-01014-0
Abstrakt: Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.
(© 2023. Springer Nature Limited.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje