Small rodent population cycles and plants - after 70 years, where do we go?

Autor: Soininen EM; Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway., Neby M; Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Høyvangvegen 40, Ridabu, 2322, Norway.
Jazyk: angličtina
Zdroj: Biological reviews of the Cambridge Philosophical Society [Biol Rev Camb Philos Soc] 2024 Feb; Vol. 99 (1), pp. 265-294. Date of Electronic Publication: 2023 Oct 12.
DOI: 10.1111/brv.13021
Abstrakt: Small rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long-lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant-herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant-rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore-relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent-plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant-herbivore interactions have - or do not have - plausible effects on rodent population dynamics.
(© 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
Databáze: MEDLINE