Photoprotective and antigenotoxic properties of Cutibacterium acnes ecotypes native to terrestrial subsurface habitats.

Autor: Pedraza Barrera CA; Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética (COL0083849), Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander (UIS) Calle 9na y carrera 27, Bucaramanga Santander, Colombia., Fuentes JL; Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética (COL0083849), Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander (UIS) Calle 9na y carrera 27, Bucaramanga Santander, Colombia.
Jazyk: angličtina
Zdroj: FEMS microbiology letters [FEMS Microbiol Lett] 2023 Jan 17; Vol. 370.
DOI: 10.1093/femsle/fnad108
Abstrakt: Actinobacteria are known to produce a variety of secondary metabolites with skin-protective properties. This study aimed to investigate the photoprotective and antigenotoxic properties against UVB of extracts obtained from Cutibacterium acnes strains. Bacterial growth was measured spectrophotometrically and the constant maximum growth rate (μ) value to each strain, were calculated. In vitro photoprotection efficacy was evaluated using in vitro indices such as sun protection factor (SPFespectrophotometric) and critical wavelength (λc). UVB-antigenotoxicity was also evaluated using the SOS Chromotest. Correlation analysis was used to examine the relationship between SPFespectrophotometric and extract concentration and the %GI estimates. Among the studied strains, one showed low (6.0 ≤ SPFespectrophotometric ≤ 14.9) and eight showed media (15.0 ≤ SPFespectrophotometric ≤ 29.9) UVB photoprotection efficacy. All of them resulted in broad-spectrum (UVA-UVB) photoprotection (λc > 370 nm). In total, two C. acnes ecotypes with different growth rates were evidenced, but the protective metabolites in the extracts were produced without the influence of growth rate. Photoprotective efficacy depended on the extract concentration and was correlated with antigenotoxicity. We demonstrated that C. acnes extracts can be used as sunscreen ingredients that reduce UVB-induced genotoxicity.
(© The Author(s) 2023. Published by Oxford University Press on behalf of FEMS.)
Databáze: MEDLINE