Modeling the combined resistance to microwave treatments and salt conditions of Escherichia coli and Staphylococcus aureus .
Autor: | Benfedala S; Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria., Valero A; Department of Food Science and Technology, UIC Zoonosis y EnfermedadesEmergentes (ENZOEM), CeiA3, Universidad de Córdoba, Córdoba, Spain., Brahmi F; Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria., Belbahi A; Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria.; Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Department of Microbiology and Biochemistry, Faculty of Sciences, University of M' Sila, M' Sila, Algeria., Kernou ON; Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria., Adjeroud-Abdellatif N; Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria., Abbou A; Research Center in Agro-food Technologies, Road of Targua-Ouzemour, Bejaia, Algeria., Madani K; Research Center in Agro-food Technologies, Road of Targua-Ouzemour, Bejaia, Algeria. |
---|---|
Jazyk: | angličtina |
Zdroj: | Food science and technology international = Ciencia y tecnologia de los alimentos internacional [Food Sci Technol Int] 2023 Oct 10, pp. 10820132231205622. Date of Electronic Publication: 2023 Oct 10. |
DOI: | 10.1177/10820132231205622 |
Abstrakt: | In the present study, the efficiency of the combined effect of microwave irradiation treatments together with salt concentration was assessed against Escherichia coli and Staphylococcus aureus . Microbial survival has been modeled through a one-step Weibull equation considering the non-isothermal profiles during the heating treatments. Three sodium chloride concentrations 0.5%, 3.5%, and 8.5% ( w/v ) treated under three microwave power levels (450, 600, and 800 W) were studied. Predictive models were validated using the determination coefficient ( R 2 ), root mean squared error and the acceptable prediction zone with external data obtained from ultra high temperature milk. The results obtained suggested that increasing microwave power levels and decreasing salt concentrations led to a higher microbial inactivation, being the δ values (time for achieving a first decimal reduction) for E coli of 19.57 s at 800 W and 0.5% NaCl. In contrast, experimental data of S aureus showed a higher variability since it presented more resistance to the microwave treatments. The results obtained and generated models can be used as decision-making tools to set specific guidelines on microwave treatments for assuring food safety. Competing Interests: DECLARATION OF CONFLICTING INTERESTSThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. |
Databáze: | MEDLINE |
Externí odkaz: |