Effects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial.
Autor: | Johansen A; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark., Armand S; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.; Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark., Plavén-Sigray P; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Nasser A; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Ozenne B; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.; Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark., Petersen IN; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Keller SH; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Madsen J; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Beliveau V; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.; Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria., Møller K; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.; Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Vassilieva A; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.; Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Langley C; Department of Psychiatry, University of Cambridge, Cambridge, UK., Svarer C; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark., Stenbæk DS; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.; Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark., Sahakian BJ; Department of Psychiatry, University of Cambridge, Cambridge, UK., Knudsen GM; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. gmk@nru.dk.; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. gmk@nru.dk. |
---|---|
Jazyk: | angličtina |
Zdroj: | Molecular psychiatry [Mol Psychiatry] 2023 Oct; Vol. 28 (10), pp. 4272-4279. Date of Electronic Publication: 2023 Oct 09. |
DOI: | 10.1038/s41380-023-02285-8 |
Abstrakt: | Selective serotonin reuptake inhibitors (SSRIs) are widely used for treating neuropsychiatric disorders. However, the exact mechanism of action and why effects can take several weeks to manifest is not clear. The hypothesis of neuroplasticity is supported by preclinical studies, but the evidence in humans is limited. Here, we investigate the effects of the SSRI escitalopram on presynaptic density as a proxy for synaptic plasticity. In a double-blind placebo-controlled study (NCT04239339), 32 healthy participants with no history of psychiatric or cognitive disorders were randomized to receive daily oral dosing of either 20 mg escitalopram (n = 17) or a placebo (n = 15). After an intervention period of 3-5 weeks, participants underwent a [ 11 C]UCB-J PET scan (29 with full arterial input function) to quantify synaptic vesicle glycoprotein 2A (SV2A) density in the hippocampus and the neocortex. Whereas we find no statistically significant group difference in SV2A binding after an average of 29 (range: 24-38) days of intervention, our secondary analyses show a time-dependent effect of escitalopram on cerebral SV2A binding with positive associations between [ 11 C]UCB-J binding and duration of escitalopram intervention. Our findings suggest that brain synaptic plasticity evolves over 3-5 weeks in healthy humans following daily intake of escitalopram. This is the first in vivo evidence to support the hypothesis of neuroplasticity as a mechanism of action for SSRIs in humans and it offers a plausible biological explanation for the delayed treatment response commonly observed in patients treated with SSRIs. While replication is warranted, these results have important implications for the design of future clinical studies investigating the neurobiological effects of SSRIs. (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |