Diminishing neuronal acidification by channelrhodopsins with low proton conduction.
Autor: | Hayward RF; School of Engineering and Applied Sciences, Harvard University, Cambridge, United States., Brooks FP 3rd; Department of Chemistry, Harvard University, Cambridge, United States., Yang S; Department of Neurophysiology, University of Wurzburg, Wurzburg, Germany., Gao S; Department of Neurophysiology, University of Wurzburg, Wurzburg, Germany., Cohen AE; Department of Chemistry, Harvard University, Cambridge, United States.; Department of Physics, Harvard University, Cambridge, United States. |
---|---|
Jazyk: | angličtina |
Zdroj: | ELife [Elife] 2023 Oct 06; Vol. 12. Date of Electronic Publication: 2023 Oct 06. |
DOI: | 10.7554/eLife.86833 |
Abstrakt: | Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems. Competing Interests: RH, FB, SY, SG, AC No competing interests declared (© 2023, Hayward et al.) |
Databáze: | MEDLINE |
Externí odkaz: |