Agarose fibers with glycerol and graphene oxide and functional properties for potential application in biomaterials.

Autor: Pinto MMR; School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Béttio, 1000, Parque Ecológico do Tietê, Ermelino Matarazzo, São Paulo, SP, Brazil., Sánchez AAC; School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Béttio, 1000, Parque Ecológico do Tietê, Ermelino Matarazzo, São Paulo, SP, Brazil., da Costa SM; School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Béttio, 1000, Parque Ecológico do Tietê, Ermelino Matarazzo, São Paulo, SP, Brazil., do Nascimento JHO; Departament of Textile Engineering - DET, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 300 - Lagoa Nova, Natal, RN, Brazil., Galvão F; Departament of Textile Engineering - DET, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 300 - Lagoa Nova, Natal, RN, Brazil., de Lima FS; Laboratory of Technical Textiles and Protection Products, Institute for Technological Research of São Paulo State, São Paulo 05508-901, SP, Brazil., Ferraz HG; Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Cidade Universitária, 05508-000 São Paulo, Brazil., Oliveira RC; Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil. Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, 1701290, Bauru, SP - Brazil., da Costa SA; School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Béttio, 1000, Parque Ecológico do Tietê, Ermelino Matarazzo, São Paulo, SP, Brazil. Electronic address: silgia@usp.br.
Jazyk: angličtina
Zdroj: International journal of biological macromolecules [Int J Biol Macromol] 2023 Dec 31; Vol. 253 (Pt 5), pp. 127204. Date of Electronic Publication: 2023 Oct 04.
DOI: 10.1016/j.ijbiomac.2023.127204
Abstrakt: Agarose has numerous applications in biochemistry and medical textiles. This study aimed to produce agarose-graphene oxide-glycerol fibers and analyze their properties. The agarose gel was prepared by dissolving the polymer in 9:1 (v/v) dimethyl sulfoxide (DMSO): H 2 O, followed by spinning in an ethanol bath (1:1 (v/v) ethanol: H 2 O) at 20 °C. Fibers were obtained using 8 % (m/v) agarose, 2 % (m/v) glycerol, and 0.5 % and 1 % (m/v) graphene oxide (GO). The fibers had a titer of 18.32-32.49 tex and, a tenacity of 1.40-3.35 cN/tex. GO increased the thermal resistance by 79 %. The presence of glycerol and GO was confirmed and analyzed by FTIR and XPS. Fiber water absorption was decreased by 30 % with the GO addition. The weight loss increased by 55 % after glycerol addition, 51 % with GO addition, and 36 % with glycerol and GO simultaneous addition. Furthermore, GO exhibited 100 % inhibition for both S. aureus (gram-positive) and E. coli bacteria (gram-negative). Fiber F1, with only agarose, inhibited S. aureus by 34.93 %, F2 with 2 % glycerol by 48.72 %, F3 with 0.5 % GO by 63.42 %, and F4 with 2 % glycerol and 0.5 % GO by 30.65 %. However, the inhibition increased to 49.43 % with 1 % GO. The agarose fibers showed low inhibition for E. coli, ranging from 3.35 to 12.12 %.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE