Steps toward a digital twin for functional food production with increased health benefits.
Autor: | Sørensen HM; School of Biotechnology, Dublin City University, D9 Dublin, Ireland.; I-Form, Advanced Manufacturing Research Centre, Dublin City University, D9 Dublin, Ireland., Cunningham D; School of Biotechnology, Dublin City University, D9 Dublin, Ireland., Balakrishnan R; School of Biotechnology, Dublin City University, D9 Dublin, Ireland., Maye S; Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36, Mitchelstown, Ireland., MacLeod G; Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36, Mitchelstown, Ireland., Brabazon D; I-Form, Advanced Manufacturing Research Centre, Dublin City University, D9 Dublin, Ireland., Loscher C; School of Biotechnology, Dublin City University, D9 Dublin, Ireland., Freeland B; School of Biotechnology, Dublin City University, D9 Dublin, Ireland. |
---|---|
Jazyk: | angličtina |
Zdroj: | Current research in food science [Curr Res Food Sci] 2023 Sep 26; Vol. 7, pp. 100593. Date of Electronic Publication: 2023 Sep 26 (Print Publication: 2023). |
DOI: | 10.1016/j.crfs.2023.100593 |
Abstrakt: | Lactobacillus rhamnosus ( L. rhamnosus ) is a commensal bacterium with health-promoting properties and with a wide range of applications within the food industry. To improve and optimize the control of L. rhamnosus biomass production in batch and fed-batch bioprocesses, this study proposes the application of artificial neural network (ANN) modelling to improve process control and monitoring, with potential future implementation as a basis for a digital twin. Three ANNs were developed using historical data from ten bioprocesses. These ANNs were designed to predict the biomass in batch bioprocesses with different media compositions, predict biomass in fed-batch bioprocesses, and predict the growth rate in fed-batch bioprocesses. The immunomodulatory effect of the L. rhamnosus samples was examined and found to elicit an anti-inflammatory response as evidenced by the inhibition of IL-6 and TNF-α secretion. Overall, the findings of this study reinforce the potential of ANN modelling for bioprocess optimization aimed at improved control for maximising the volumetric productivity of L. rhamnosus as an immunomodulatory agent with applications in the functional food industry. Competing Interests: The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Helena Mylise Sorensen reports financial support was provided by 10.13039/501100001602Science Foundation Ireland. (© 2023 The Authors.) |
Databáze: | MEDLINE |
Externí odkaz: |