Ab initio quantum scattering calculations and a new potential energy surface for the HCl(X1Σ+)-O2(X3Σg-) system: Collision-induced line shape parameters for O2-perturbed R(0) 0-0 line in H35Cl.

Autor: Olejnik A; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland., Jóźwiak H; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland., Gancewski M; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland., Quintas-Sánchez E; Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA., Dawes R; Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA., Wcisło P; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
Jazyk: angličtina
Zdroj: The Journal of chemical physics [J Chem Phys] 2023 Oct 07; Vol. 159 (13).
DOI: 10.1063/5.0169968
Abstrakt: The remote sensing of abundance and properties of HCl-the main atmospheric reservoir of Cl atoms that directly participate in ozone depletion-is important for monitoring the partitioning of chlorine between "ozone-depleting" and "reservoir" species. Such remote studies require knowledge of the shapes of molecular resonances of HCl, which are perturbed by collisions with the molecules of the surrounding air. In this work, we report the first fully quantum calculations of collisional perturbations of the shape of a pure rotational line in H35Cl perturbed by an air-relevant molecule [as the first model system we choose the R(0) line in HCl perturbed by O2]. The calculations are performed on our new highly accurate HCl(X1Σ+)-O2(X3Σg-) potential energy surface. In addition to pressure broadening and shift, we also determine their speed dependencies and the complex Dicke parameter. This gives important input to the community discussion on the physical meaning of the complex Dicke parameter and its relevance for atmospheric spectra (previously, the complex Dicke parameter for such systems was mainly determined from phenomenological fits to experimental spectra and the physical meaning of its value in that context is questionable). We also calculate the temperature dependence of the line shape parameters and obtain agreement with the available experimental data. We estimate the total combined uncertainties of our calculations at 2% relative root-mean-square error in the simulated line shape at 296 K. This result constitutes an important step toward computational population of spectroscopic databases with accurate ab initio line shape parameters for molecular systems of terrestrial atmospheric importance.
(© 2023 Author(s). Published under an exclusive license by AIP Publishing.)
Databáze: MEDLINE