Autor: |
Perales-Martínez IA; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico., Palacios-Pineda LM; Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Carr. México-Pachuca Km 87.5, Pachuca 42080, Hidalgo, Mexico., Elías-Zúñiga A; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico., Olvera-Trejo D; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico., Del Ángel-Sánchez K; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico., Cruz-Cruz I; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico., Ramírez-Herrera CA; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico., Martínez-Romero O; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, Nuevo León, Mexico. |
Abstrakt: |
In this paper, we discuss the creation of a hybrid magnetorheological elastomer that combines nano- and microparticles. The mixture contained 45 wt.% fillers, with combinations of either 0% nanoparticles and 100% microparticles or 25% nanoparticles and 75% microparticles. TGA and FTIR testing confirmed the materials' thermal and chemical stability, while an SEM analysis determined the particles' size and morphology. XRD results were used to determine the crystal size of both nano- and microparticles. The addition of reinforcing particles, particularly nanoparticles, enhanced the stiffness of the composite materials studied, but their overall strength was only minimally affected. The computed interaction parameter relative to the volume fraction was consistent with the previous literature. Furthermore, the study observed a magnetic response increment in composite materials reinforced with nanoparticles above 30 Hz. The isotropic material containing only microparticles had a lower storage modulus than the isotropic sample with nanoparticles without a magnetic field. However, when a magnetic field was applied, the material with only microparticles exhibited a higher storage modulus than the samples with nanoparticles. |