Autor: |
Merrick BA; Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Martin NP; Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Brooks AM; Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Foley JF; Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Dunlap PE; Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Ramaiahgari S; Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Fannin RD; Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA., Gerrish KE; Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA. |
Abstrakt: |
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity. |