A Bioresorbable and Conductive Scaffold Integrating Silicon Membranes for Peripheral Nerve Regeneration.
Autor: | Sun P; School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China., Guan Y; Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China.; Co-innovation Center of Neuroregeneration, Nantong University Nantong, Nantong, Jiangsu Province, 226007, P. R. China.; Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China., Yang C; School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China., Hou H; School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China., Liu S; School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China., Yang B; Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China.; Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China., Li X; Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China., Chen S; Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China., Wang L; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China., Wang H; Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China., Huang Y; Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China., Sheng X; Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China., Peng J; Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China., Xiong W; School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China., Wang Y; Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China., Yin L; School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Advanced healthcare materials [Adv Healthc Mater] 2023 Dec; Vol. 12 (32), pp. e2301859. Date of Electronic Publication: 2023 Oct 15. |
DOI: | 10.1002/adhm.202301859 |
Abstrakt: | Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine. (© 2023 Wiley-VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |