Development of hydrogels based on xylan and poly (acrylic acid) for melamine adsorption in batch and continuous mode: experimental design, kinetics, isotherms, recyclability, and fixed-bed column.
Autor: | Fröhlich AC; POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, Florianópolis, SC, 88040-900, Brazil., Mazur LP; BIOMAT, Laboratório de Biomateriais, Faculty of Chemical Engineering, Department of Materials Engineering and Bioprocess, University of Campinas, Cidade Universitária Zeferino Vaz, 13083-852, Campinas, SP, Brazil., da Silva A; LABMASSA, Laboratório de Transferência de Massa, Chemical Engineering Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, 88040-900, Florianópolis, SC, Brazil., de Andrade Maranhão T; LEMA/LARES, Laboratório de Espectrometria de Massas e Atômica/Laboratório de Análises de Resíduos, Chemistry Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, Florianópolis, SC, 88040-900, Brazil., Parize AL; POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, Florianópolis, SC, 88040-900, Brazil. alexandre.parize@ufsc.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Oct; Vol. 30 (49), pp. 107970-107992. Date of Electronic Publication: 2023 Sep 25. |
DOI: | 10.1007/s11356-023-29891-x |
Abstrakt: | Two hydrogels were synthesized, characterized, and applied as alternative materials to remove melamine (MEL) from aqueous media by adsorption. For the first time, a complete study of MEL adsorption is presented, including optimization, kinetics, isotherm, reuse, and column studies with these new materials. One hydrogel is based on xylan and poly (acrylic acid) and was named HXy, and the other is based on the same components functionalized with activated carbon and was named HXy-AC. The materials were synthesized by free radical polymerization and characterized by FTIR, XRD, TGA, DSC, SEM, zeta potential, point of zero charge, N (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
Databáze: | MEDLINE |
Externí odkaz: |