Nile red-based lipid fluorometry protocol and its use for statistical optimization of lipids in oleaginous yeasts.

Autor: Ouellet B; Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada.; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada., Morneau Z; Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada., Abdel-Mawgoud AM; Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada. ahmad.saleh@bcm.ulaval.ca.; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada. ahmad.saleh@bcm.ulaval.ca.
Jazyk: angličtina
Zdroj: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Dec; Vol. 107 (23), pp. 7313-7330. Date of Electronic Publication: 2023 Sep 23.
DOI: 10.1007/s00253-023-12786-9
Abstrakt: As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: • Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. • NR-based lipid fluorometry can be well used for large-scale experiments like DoE. • Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje