Possible role of selenium in ameliorating lead-induced neurotoxicity in the cerebrum of adult male rats: an experimental study.

Autor: Hegazy AA; Human Anatomy and Embryology Department, Faculty of Dentistry, Zarqa University, Zarqa City, 13110, Jordan. ahegazy@zu.edu.eg.; Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt. ahegazy@zu.edu.eg., Domouky AM; Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt., Akmal F; Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt., El-Wafaey DI; Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2023 Sep 21; Vol. 13 (1), pp. 15715. Date of Electronic Publication: 2023 Sep 21.
DOI: 10.1038/s41598-023-42319-3
Abstrakt: Chronic lead (Pb) poisoning is one of the greatest public health risks. The nervous system is the primary and most vulnerable target of Pb poisoning. Selenium (Se) has been shown to be a potential protection against heavy metal toxicity through anti-inflammatory and antioxidant properties. Therefore, the present study aimed to elucidate the possible protective role of Se in ameliorating the effects of Pb on rat cerebral structure by examining oxidative stress and markers of apoptosis. The rats were divided into 6 groups: control group, Se group, low Pb group, high Pb group, low Pb + Se group, high Pb + Se group. After the 4-week experiment period, cerebral samples were examined using biochemical and histological techniques. Pb ingestion especially when administered in high doses resulted in cerebral injury manifested by a significant increase in glial fibrillary acidic protein, malondialdehyde (MDA) marker of brain oxidation and DNA fragmentation. Moreover, Pb produced alteration of the normal cerebral structure and cellular degeneration with a significant reduction in the total number of neurons and thickness of the frontal cortex with separation of meninges from the cerebral surface. There was also a decrease in total antioxidant capacity. All these changes are greatly improved by adding Se especially in the low Pb + Se group. The cerebral structure showed a relatively normal histological appearance with normally attached pia and an improvement in neuronal structure. There was also a decrease in MDA and DNA fragmentation and an increase TAC. Selenium is suggested to reduce Pb-induced neurotoxicity due to its modulation of oxidative stress and apoptosis.
(© 2023. Springer Nature Limited.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje