Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks.

Autor: Oh S; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Song TE; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Mahato M; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Kim JS; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Yoo H; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Lee MJ; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Khan M; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea., Yeo WH; George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA., Oh IK; National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34142, Republic of Korea.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Nov; Vol. 35 (47), pp. e2304442. Date of Electronic Publication: 2023 Oct 05.
DOI: 10.1002/adma.202304442
Abstrakt: Wearable haptic interfaces prioritize user comfort, but also value the ability to provide diverse feedback patterns for immersive interactions with the virtual or augmented reality. Here, to provide both comfort and diverse tactile feedback, an easy-to-wear and multimodal wearable haptic auxetic fabric (WHAF) is prepared by knotting shape-memory alloy wires into an auxetic-structured fabric. This unique meta-design allows the WHAF to completely expand and contract in 3D, providing superior size-fitting and shape-fitting capabilities. Additionally, a microscale thin layer of Parylene is coated on the surface to create electrically separated zones within the WHAF, featuring zone-specified actuation for conveying diverse spatiotemporal information to users with using the WHAF alone. Depending on the body part it is worn on, the WHAF conveys either cutaneous or kinesthetic feedback, thus, working as a multimodal wearable haptic interface. As a result, when worn on the forearm, the WHAF intuitively provides spatiotemporal information to users during hands-free navigation and teleoperation in virtual reality, and when worn on the elbow, the WHAF guides users to reach the desired elbow flexion, like a personal exercise advisor.
(© 2023 Wiley-VCH GmbH.)
Databáze: MEDLINE