Schiff Base Reaction in a Living Cell: In Situ Synthesis of a Hollow Covalent Organic Polymer To Regulate Biological Functions.

Autor: Xu HB; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Chen HY; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Lv J; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Chen BB; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen City, Guangdong, 518172, P. R. China., Zhou ZR; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Chang S; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Gao YT; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Huang WF; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Ye MJ; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Cheng ZJ; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Hafez ME; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.; Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt., Qian RC; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China., Li DW; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Jazyk: angličtina
Zdroj: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2023 Oct 26; Vol. 62 (44), pp. e202311002. Date of Electronic Publication: 2023 Sep 25.
DOI: 10.1002/anie.202311002
Abstrakt: Artificially performing chemical reactions in living biosystems to attain various physiological aims remains an intriguing but very challenging task. In this study, the Schiff base reaction was conducted in cells using Sc(OTf) 3 as a catalyst, enabling the in situ synthesis of a hollow covalent organic polymer (HCOP) without external stimuli. The reversible Schiff base reaction mediated intracellular Oswald ripening endows the HCOP with a spherical, hollow porous structure and a large specific surface area. The intracellularly generated HCOP reduced cellular motility by restraining actin polymerization, which consequently induced mitochondrial deactivation, apoptosis, and necroptosis. The presented intracellular synthesis system inspired by the Schiff base reaction has strong potential to regulate cell fate and biological functions, opening up a new strategic possibility for intervening in cellular behavior.
(© 2023 Wiley-VCH GmbH.)
Databáze: MEDLINE