Dietary Debaryomyces hansenii promotes skin and skin mucus defensive capacities in a marine fish model.

Autor: Sanahuja I; Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain., Fernandez-Alacid L; Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain., Torrecillas S; Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain., Ruiz A; Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain., Vallejos-Vidal E; Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile., Firmino JP; Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain., Reyes-Lopez FE; Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile., Tort L; Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain., Tovar-Ramirez D; Centro de Investigaciones Biológicas del Noroeste SC, CIBNOR, La Paz, Mexico., Ibarz A; Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain., Gisbert E; Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain.
Jazyk: angličtina
Zdroj: Frontiers in immunology [Front Immunol] 2023 Aug 30; Vol. 14, pp. 1247199. Date of Electronic Publication: 2023 Aug 30 (Print Publication: 2023).
DOI: 10.3389/fimmu.2023.1247199
Abstrakt: The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata . This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Sanahuja, Fernandez-Alacid, Torrecillas, Ruiz, Vallejos-Vidal, Firmino, Reyes-Lopez, Tort, Tovar-Ramirez, Ibarz and Gisbert.)
Databáze: MEDLINE