Slowing of Peripheral Nerve Conduction Velocity in Children and Adolescents With Type 1 Diabetes Is Predicted by Glucose Fluctuations.

Autor: Oberhauser SS; Paediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland., l'Allemand D; Paediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland., Willems EP; Clinical Trials Unit, Cantonal Hospital, St. Gallen, Switzerland., Gozzi T; Paediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland., Heldt K; Paediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland., Eilers M; Paediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland., Stasinaki A; Paediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland., Lütschg J; Paediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.; Medical Faculty, University of Basel, Basel, Switzerland., Broser PJ; Paediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.; Medical Faculty, University of Basel, Basel, Switzerland.
Jazyk: angličtina
Zdroj: Diabetes [Diabetes] 2023 Dec 01; Vol. 72 (12), pp. 1835-1840.
DOI: 10.2337/db23-0063
Abstrakt: Nerve conduction velocity (NCV) abnormalities are the forerunners of diabetic peripheral neuropathy (DPN). Therefore, this study aimed to analyze the effect of glucose profile quality on NCV in children and young adults with type 1 diabetes. Fifty-three children age 5 to 23 years with type 1 diabetes were recruited to participate in the study, which was conducted prospectively at the Children's Hospital of Eastern Switzerland from 2016 to 2022. Glycemic targets were recorded, and a cross-sectional nerve conduction study analyzing the peroneal, tibial, median motor, and median sensory nerves was performed. Data were compared with those of a control group of 50 healthy children. In the age- and height-matched diabetes subgroup aged 10-16 years, all four nerves showed significantly slower NCV, most pronounced for the peroneal nerve. Because height has a retarding effect on peroneal NCV, NCV was adjusted for height (dNCV). Peroneal dNCV correlated negatively with long-term glycated hemoglobin and highly significantly with glucose variability. Because high glucose variability clearly increases the risk of neuropathy, together with but also independently of the mean glucose level, this aspect of glycemic control should be given more attention in the care of individuals with diabetes.
Article Highlights: There is a strong need for the better identification of early subclinical manifestations of microvascular complications, such as diabetic peripheral neuropathy, in young individuals with diabetes. To identify peripheral neuropathy and contributing factors at an asymptomatic disease stage, and to exclude height as a known modifying factor, we performed association studies of height-adjusted nerve conduction velocity. We identified high glucose variability, especially the SD of mean glucose, as an unexpectedly strong predictor of slowed nerve conduction velocity. More attention should be paid to the goal of low glucose variability in the care of individuals with diabetes.
(© 2023 by the American Diabetes Association.)
Databáze: MEDLINE