The small G-protein Rac1 in the dorsomedial striatum promotes alcohol-dependent structural plasticity and goal-directed learning in mice.
Autor: | Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D |
---|---|
Jazyk: | angličtina |
Zdroj: | BioRxiv : the preprint server for biology [bioRxiv] 2024 Apr 18. Date of Electronic Publication: 2024 Apr 18. |
DOI: | 10.1101/2023.08.30.555562 |
Abstrakt: | The small G-protein Rac1 promotes the formation of filamentous actin (F-Actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice, or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an AAV expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning. Significance Statement: Addiction, including alcohol use disorder, is characterized by molecular and cellular adaptations that promote maladaptive behaviors. We found that Rac1 was activated by alcohol in the dorsomedial striatum (DMS) of male mice. We show that alcohol-mediated Rac1 signaling is responsible for alterations in actin dynamics and neuronal morphology. We also present data to suggest that Rac1 is important for alcohol-associated learning processes. These results suggest that Rac1 in the DMS is an important contributor to adaptations that promote alcohol use disorder. |
Databáze: | MEDLINE |
Externí odkaz: |