SV2B defines a subpopulation of synaptic vesicles.

Autor: Paulussen I; Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany.; Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany., Beckert H; Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany., Musial TF; Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany., Gschossmann LJ; Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany.; Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany., Wolf J; Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany.; Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany., Schmitt M; UCB Pharma, Braine l'Alleud 1420, Belgium., Clasadonte J; UCB Pharma, Braine l'Alleud 1420, Belgium., Mairet-Coello G; UCB Pharma, Braine l'Alleud 1420, Belgium., Wolff C; UCB Pharma, Braine l'Alleud 1420, Belgium., Schoch S; Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany., Dietrich D; Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany.
Jazyk: angličtina
Zdroj: Journal of molecular cell biology [J Mol Cell Biol] 2024 Apr 04; Vol. 15 (9).
DOI: 10.1093/jmcb/mjad054
Abstrakt: Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.
(© The Author(s) (2023). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, CEMCS, CAS.)
Databáze: MEDLINE