Current therapeutic targets and multifaceted physiological impacts of caffeine.

a polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. British Journal of Clinical Pharmacology, 47(4), 445-449. https://doi.org/10.1046/j.1365-2125.1999.00898.x.
Saiki, S., Sasazawa, Y., Imamichi, Y., Kawajiri, S., Fujimaki, T., Tanida, I., Kobayashi, H., Sato, F., Sato, S., Ishikawa, K., Imoto, M., & Hattori, N. (2011). Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy, 7(2), 176-187. https://doi.org/10.4161/auto.7.2.14074.
Saleem, H., Tovey, S. C., Molinski, T. F., & Taylor, C. W. (2014). Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. British Journal of Pharmacology, 171(13), 3298-3312. https://doi.org/10.1111/bph.12685.
Samieirad, S., Afrasiabi, H., Tohidi, E., Qolizade, M., Shaban, B., Hashemipour, M. A., & Doaltian Shirvan, I. (2017). Evaluation of caffeine versus codeine for pain and swelling management after implant surgeries: A triple blind clinical trial. Journal of Cranio-Maxillo-Facial Surgery, 45(10), 1614-1621. https://doi.org/10.1016/j.jcms.2017.06.014.
Sansone, R., Ottaviani, J. I., Rodriguez-Mateos, A., Heinen, Y., Noske, D., Spencer, J. P., Crozier, A., Merx, M. W., Kelm, M., Schroeter, H., & Heiss, C. (2017). Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: Randomized, double-masked controlled studies. The American Journal of Clinical Nutrition, 105(2), 352-360. https://doi.org/10.3945/ajcn.116.140046.
Sarkaria, J. N., Busby, E. C., Tibbetts, R. S., Roos, P., Taya, Y., Karnitz, L. M., & Abraham, R. T. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Research, 59(17), 4375-4382.
Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., Frydman, M., Harnik, R., Patanjali, S. R., Simmons, A., Clines, G. A., Sartiel, A., Gatti, R. A., … Shiloh, Y. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 268(5218), 1749-1753. https://doi.org/10.1126/science.7792600.
Sawynok, J. (2011). Caffeine and pain. Pain, 152(4), 726-729.
Sawynok, J., & Yaksh, T. L. (1993). Caffeine as an analgesic adjuvant - A review of pharmacology and mechanisms of action. Pharmacological Reviews, 45(1), 43-85.
Schlegel, R., & Pardee, A. B. (1986). Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science, 232(4755), 1264-1266. https://doi.org/10.1126/science.2422760.
Schubert, M. M., Hall, S., Leveritt, M., Grant, G., Sabapathy, S., & Desbrow, B. (2014). Caffeine consumption around an exercise bout: Effects on energy expenditure, energy intake, and exercise enjoyment. Journal of Applied Physiology (Bethesda, MD: 1985), 117(7), 745-754. https://doi.org/10.1152/japplphysiol.00570.2014.
Sesso, H. D., Gaziano, J. M., Buring, J. E., & Hennekens, C. H. (1999). Coffee and tea intake and the risk of myocardial infarction. American Journal of Epidemiology, 149(2), 162-167. https://doi.org/10.1093/oxfordjournals.aje.a009782.
Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J., & Lv, X. (2022). Caffeine in liver diseases. Pharmacology and Toxicology, 13, 1030173. https://doi.org/10.3389/fphar.2022.1030173.
Sharif, K., Watad, A., Bragazzi, N. L., Adawi, M., Amital, H., & Shoenfeld, Y. (2017). Coffee and autoimmunity: More than a mere hot beverage! Autoimmunity Reviews, 16(7), 712-721. https://doi.org/10.1016/j.autrev.2017.05.007.
Sharma, D., & Bansal, A. (2020). The bitter the taste, the better is the medicine: Is caffeine the answer to COVID-19? AIJR Preprints, 78(1), 1-3.
Sharmin, S., Guan, H., Williams, A. S., & Yang, K. (2012). Caffeine reduces 11β-hydroxysteroid dehydrogenase type 2 expression in human trophoblast cells through the adenosine A2B receptor. PLoS One, 7(6), e38082.
Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441(7092), 424-430. https://doi.org/10.1038/nature04869.
Shen, H. F., Rodriguez, A. C., Shiani, A., Lipka, S., Shahzad, G., Kumar, A., & Mustacchia, P. (2016). Association between caffeine consumption and nonalcoholic fatty liver disease: A systemic review and meta-analysis. Therapeutic Advances in Gastroenterology, 9(1), 113-120. https://doi.org/10.1177/1756283x15593700.
Shi, D., Nikodijevic, O., Jacobson, K. A., & Daly, J. W. (1993). Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cellular and Molecular Neurobiology, 13(3), 247-261. https://doi.org/10.1007/BF00733753.
Shi, D., Padgett, W. L., & Daly, J. W. (2003). Caffeine analogs: Effects on ryanodine-sensitive calcium-release channels and GABA a receptors. Cellular and Molecular Neurobiology, 23(3), 331-347.
Shiloh, Y., & Ziv, Y. (2013). The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nature Reviews. Molecular Cell Biology, 14(4), 197-210.
Shim, S. G., Jun, D. W., Kim, E. K., Saeed, W. K., Lee, K. N., Lee, H. L., Lee, O. Y., Choi, H. S., & Yoon, B. C. (2013). Caffeine attenuates liver fibrosis via defective adhesion of hepatic stellate cells in cirrhotic model. Journal of Gastroenterology and Hepatology, 28(12), 1877-1884. https://doi.org/10.1111/jgh.12317.
Shirley, D. G., Walter, S. J., & Noormohamed, F. H. (2002). Natriuretic effect of caffeine: Assessment of segmental sodium reabsorption in humans. Clinical Science (London, England), 103(5), 461-466. https://doi.org/10.1042/cs1030461.
Shrestha, B., & Jawa, G. (2017). Caffeine citrate - Is it a silver bullet in neonatology? Pediatrics and Neonatology, 58(5), 391-397. https://doi.org/10.1016/j.pedneo.2016.10.003.
Sieghart, W. (1994). Pharmacology of benzodiazepine receptors: An update. Journal of Psychiatry & Neuroscience, 19(1), 24-29.
Silman, I., & Sussman, J. L. (2005). Acetylcholinesterase: ‘Classical’ and ‘non-classical' functions and pharmacology. Current Opinion in Pharmacology, 5(3), 293-302. https://doi.org/10.1016/j.coph.2005.01.014.
Simonin, C., Duru, C., Salleron, J., Hincker, P., Charles, P., Delval, A., Youssov, K., Burnouf, S., Azulay, J. P., Verny, C., Scherer, C., Tranchant, C., Goizet, C., Debruxelles, S., Defebvre, L., Sablonnière, B., Romon-Rousseaux, M., Buée, L., Destée, A., … Huntington French Speaking Network. (2013). Association between caffeine intake and age at onset in Huntington's disease. Neurobiology of Disease, 58, 179-182. https://doi.org/10.1016/j.nbd.2013.05.013.
Sinha, R. A., Farah, B. L., Singh, B. K., Siddique, M. M., Li, Y., Wu, Y., Ilkayeva, O. R., Gooding, J., Ching, J., Zhou, J., Martinez, L., Xie, S., Bay, B. H., Summers, S. A., Newgard, C. B., & Yen, P. M. (2014). Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology, 59(4), 1366-1380. https://doi.org/10.1002/hep.26667.
Skarupke, C., Schlack, R., Lange, K., Goerke, M., Dueck, A., Thome, J., Szagun, B., & Cohrs, S. (2017). Insomnia complaints and substance use in German adolescents: Did we underestimate the role of coffee consumption? Results of the KiGGS study. Journal of Neural Transmission (Vienna), 124(Suppl 1), 69-78. https://doi.org/10.1007/s00702-015-1448-7.
Slomovitz, B. M., & Coleman, R. L. (2012). The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clinical Cancer Research, 18(21), 5856-5864. https://doi.org/10.1158/1078-0432.Ccr-12-0662.
Smith, A. (2002). Effects of caffeine on human behavior. Food and Chemical Toxicology, 40(9), 1243-1255. https://doi.org/10.1016/s0278-6915(02)00096-0.
Smith, A., Brice, C., Nash, J., Rich, N., & Nutt, D. J. (2003). Caffeine and central noradrenaline: Effects on mood, cognitive performance, eye movements and cardiovascular function. Journal of Psychopharmacology, 17(3), 283-292. https://doi.org/10.1177/02698811030173010.
Smith, G. C. M., & Jackson, S. P. (2003). Handbook of cell signaling. Elsevier Academic Press: New York, 1, 557-561.
Snel, J., & Lorist, M. M. (2011). Chapter 6 - Effects of caffeine on sleep and cognition. In H. P. A. Van Dongen & G. A. Kerkhof (Eds.), Progress in brain research (Vol. 190, pp. 105-117). Elsevier.
Song, F. J., Qureshi, A. A., & Han, J. L. (2012). Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin. Cancer Research, 72(13), 3282-3289. https://doi.org/10.1158/0008-5472.Can-11-3511.
Spielman, W. S., & Arend, L. J. (1991). Adenosine receptors and signaling in the kidney. Hypertension, 17(2), 117-130. https://doi.org/10.1161/01.hyp.17.2.117.
Sprang, S., Fletterick, R., Stern, M., Yang, D., Madsen, N., & Sturtevant, J. (1982). Analysis of an allosteric binding site: The nucleoside inhibitor site of phosphorylase alpha. Biochemistry, 21(9), 2036-2048. https://doi.org/10.1021/bi00538a010.
Stockwell, J., Jakova, E., & Cayabyab, F. S. (2017). Adenosine A1 and A2A receptors in the brain: Current research and their role in Neurodegeneration. Molecules, 22(4), 676. https://doi.org/10.3390/molecules22040676.
Stouth, D. W., Lebeau, P. F., & Austin, R. C. (2023). Repurposing two old friends to fight cancer: Caffeine and statins. Cancer Research, 83(13), 2091-2092. https://doi.org/10.1158/0008-5472.CAN-23-1066.
Sulem, P., Gudbjartsson, D. F., Geller, F., Prokopenko, I., Feenstra, B., Aben, K. K. H., Franke, B., den Heijer, M., Kovacs, P., Stumvoll, M., Mägi, R., Yanek, L. R., Becker, L. C., Boyd, H. A., Stacey, S. N., Walters, G. B., Jonasdottir, A., Thorleifsson, G., Holm, H., … Stefansson, K. (2011). Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Human Molecular Genetics, 20(10), 2071-2077. https://doi.org/10.1093/hmg/ddr086.
Sullivan, G. W., Luong, L. S., Carper, H. T., Barnes, R. C., & Mandell, G. L. (1995). Methylxanthines with adenosine alter TNF alpha-primed PMN activation. Immunopharmacology, 31(1), 19-29. https://doi.org/10.1016/0162-3109(95)00030-0.
Tatler, A. L., Barnes, J., Habgood, A., Goodwin, A., McAnulty, R. J., & Jenkins, G. (2016). Caffeine inhibits TGFbeta activation in epithelial cells, interrupts fibroblast responses to TGFbeta, and reduces established fibrosis in ex vivo precision-cut lung slices. Thorax, 71(6), 565-567. https://doi.org/10.1136/thoraxjnl-2015-208215.
Taylor, C. W., & Tovey, S. C. (2010). IP3 receptors: Toward understanding their activation. Cold Spring Harbor Perspectives in Biology, 2(12), a004010. https://doi.org/10.1101/cshperspect.a004010.
Tej, G., & Nayak, P. K. (2018). Mechanistic considerations in chemotherapeutic activity of caffeine. Biomedicine & Pharmacotherapy, 105, 312-319. https://doi.org/10.1016/j.biopha.2018.05.144.
Tej, G. N. V. C., Neogi, K., Verma, S. S., Gupta, S. C., & Nayak, P. K. (2019). Caffeine-enhanced anti-tumor immune response through decreased expression of PD1 on infiltrated cytotoxic T lymphocytes. European Journal of Pharmacology, 859, 172538. https://doi.org/10.1016/j.ejphar.2019.172538.
Temido-Ferreira, M., Ferreira, D. G., Batalha, V. L., Marques-Morgado, I., Coelho, J. E., Pereira, P., Gomes, R., Pinto, A., Carvalho, S., Canas, P. M., Cuvelier, L., Buée-Scherrer, V., Faivre, E., Baqi, Y., Müller, C. E., Pimentel, J., Schiffmann, S. N., Buée, L., Bader, M., … Lopes, L. V. (2020). Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 25(8), 1876-1900.
The International Agency for Research on Cancer (Author). (1991). Coffee, tea, mate, methylxanthines and methylglyoxal. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 27 February to 6 March 1990. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 51, 1-513.
Thomson, S. A., Banker, P., Bickett, D. M., Boucheron, J. A., Carter, H. L., Clancy, D. C., Cooper, J. P., Dickerson, S. H., Garrido, D. M., Nolte, R. T., Peat, A. J., Sheckler, L. R., Sparks, S. M., Tavares, F. X., Wang, L., Wang, T. Y., & Weiel, J. E. (2009). Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy. Bioorganic & Medicinal Chemistry Letters, 19(4), 1177-1182. https://doi.org/10.1016/j.bmcl.2008.12.085.
Thorn, C. F., Aklillu, E., McDonagh, E. M., Klein, T. E., & Altman, R. B. (2012). PharmGKB summary: Caffeine pathway. Pharmacogenetics and Genomics, 22(5), 389-395. https://doi.org/10.1097/FPC.0b013e3283505d5e.
Tian, D. D., Natesan, S., White, J. R., Jr., & Paine, M. F. (2019). Effects of common CYP1A2 genotypes and other key factors on Intraindividual variation in the caffeine metabolic ratio: An exploratory analysis. Clinical and Translational Science, 12(1), 39-46. https://doi.org/10.1111/cts.12598.
Tichý, A., Vávrová, J., Pejchal, J., & Rezácová, M. (2010). Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response. Acta Medica (Hradec Králové), 53(1), 13-17.
Toescu, E. C., O'Neill, S. C., Petersen, O. H., & Eisner, D. A. (1992). Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production. The Journal of Biological Chemistry, 267(33), 23467-23470.
Tofovic, S. P., Branch, K. R., Oliver, R. D., Magee, W. D., & Jackson, E. K. (1991). Caffeine potentiates vasodilator-induced renin release. Journal of Pharmacology and Experimental Therapeutics, 256(3), 850-860.
Tommerdahl, K. L., Hu, E. A., Selvin, E., Steffen, L. M., Coresh, J., Grams, M. E., Bjornstad, P., Rebholz, C. M., & Parikh, C. R. (2022). Coffee consumption May mitigate the risk for acute kidney injury: Results from the atherosclerosis risk in communities study. Kidney Int Rep, 7(7), 1665-1672. https://doi.org/10.1016/j.ekir.2022.04.091.
Trang, J. M., Blanchard, J., Conrad, K. A., & Harrison, G. G. (1985). Relationship between Total-body clearance of caffeine and urine flow-rate in elderly men. Biopharmaceutics & Drug Disposition, 6(1), 51-56. https://doi.org/10.1002/bdd.2510060107.
Tseng, C. J., Kuan, C. J., Chu, H., & Tung, C. S. (1993). Effect of caffeine treatment on plasma renin activity and angiotensin I concentrations in rats on a low sodium diet. Life Sciences, 52(10), 883-890. https://doi.org/10.1016/0024-3205(93)90518-8.
Turnbull, D., Rodricks, J. V., & Mariano, G. F. (2016). Neurobehavioral hazard identification and characterization for caffeine. Regulatory Toxicology and Pharmacology, 74, 81-92. https://doi.org/10.1016/j.yrtph.2015.12.002.
Turnbull, D., Rodricks, J. V., Mariano, G. F., & Chowdhury, F. (2017). Caffeine and cardiovascular health. Regulatory Toxicology and Pharmacology, 89, 165-185. https://doi.org/10.1016/j.yrtph.2017.07.025.
Um, C. Y., McCullough, M. L., Guinter, M. A., Campbell, P. T., Jacobs, E. J., & Gapstur, S. M. (2020). Coffee consumption and risk of colorectal cancer in the cancer prevention study-II nutrition cohort. Cancer Epidemiology, 67, 101730. https://doi.org/10.1016/j.canep.2020.101730.
Umemura, T., Ueda, K., Nishioka, K., Hidaka, T., Takemoto, H., Nakamura, S., Jitsuiki, D., Soga, J., Goto, C., Chayama, K., Yoshizumi, M., & Higashi, Y. (2006). Effects of acute administration of caffeine on vascular function. The American Journal of Cardiology, 98(11), 1538-1541. https://doi.org/10.1016/j.amjcard.2006.06.058.
Urry, E., & Landolt, H. P. (2015). Adenosine, caffeine, and performance: From cognitive neuroscience of sleep to sleep pharmacogenetics. Current Topics in Behavioral Neurosciences, 25, 331-366. https://doi.org/10.1007/7854_2014_274.
Valdez, R. C., Ahlawat, R., Wills-Karp, M., Nathan, A., Ezell, T., & Gauda, E. B. (2011). Correlation between serum caffeine levels and changes in cytokine profile in a cohort of preterm infants. Journal of Pediatrics, 158(1), 57-64, 64.e1. https://doi.org/10.1016/j.jpeds.2010.06.051.
van Dam, R. M., & Hu, F. B. (2022). Caffeine consumption and cardiovascular health. Nature Reviews. Cardiology, 19(7), 429-430. https://doi.org/10.1038/s41569-022-00719-4.
van Furth, A. M., Seijmonsbergen, E. M., Langermans, J. A., van der Meide, P. H., & van Furth, R. (1995). Effect of xanthine derivates and dexamethasone on Streptococcus pneumoniae-stimulated production of tumor necrosis factor alpha, interleukin-1 beta (IL-1 beta), and IL-10 by human leukocytes. Clinical and Diagnostic Laboratory Immunology, 2(6), 689-692. https://doi.org/10.1128/cdli.2.6.689-692.1995.
Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P. C., Woscholski, R., Parker, P. J., & Waterfield, M. D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annual Review of Biochemistry, 70, 535-602. https://doi.org/10.1146/annurev.biochem.70.1.535.
Vanhaesebroeck, B., & Waterfield, M. D. (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Experimental Cell Research, 253(1), 239-254. https://doi.org/10.1006/excr.1999.4701.
Vargas-Pozada, E. E., Ramos-Tovar, E., Acero-Hernandez, C., Cardoso-Lezama, I., Galindo-Gomez, S., Tsutsumi, V., & Muriel, P. (2023). The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Canadian Journal of Physiology and Pharmacology, 101(3), 147-159. https://doi.org/10.1139/cjpp-2022-0303.
Vidyasagar, R., Greyling, A., Draijer, R., Corfield, D. R., & Parkes, L. M. (2013). The effect of black tea and caffeine on regional cerebral blood flow measured with arterial spin labeling. Journal of Cerebral Blood Flow and Metabolism, 33(6), 963-968. https://doi.org/10.1038/jcbfm.2013.40.
Walaschewski, R., Begrow, F., & Verspohl, E. J. (2013). Impact and benefit of A2B-adenosine receptor agonists for the respiratory tract: Mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release. Journal of Pharmacy and Pharmacology, 65(1), 123-132. https://doi.org/10.1111/j.2042-7158.2012.01580.x.
Wang, H. Q., Song, K. Y., Feng, J. Z., Huang, S. Y., Guo, X. M., Zhang, L., Zhang, G., Huo, Y. C., Zhang, R. R., Ma, Y., Hu, Q. Z., & Qin, X. Y. (2022). Caffeine inhibits activation of the NLRP3 Inflammasome via autophagy to attenuate microglia-mediated Neuroinflammation in experimental autoimmune encephalomyelitis. Journal of Molecular Neuroscience, 72(1), 97-112. https://doi.org/10.1007/s12031-021-01894-8.
Wang, P., Jia, J., & Zhang, D. (2020). Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep, 2(6), 100165. https://doi.org/10.1016/j.jhepr.2020.100165.
Wang, Q., Dai, X., Yang, W., Wang, H., Zhao, H., Yang, F., Yang, Y., Li, J., & Lv, X. (2015). Caffeine protects against alcohol-induced liver fibrosis by dampening the cAMP/PKA/CREB pathway in rat hepatic stellate cells. International Immunopharmacology, 25(2), 340-352. https://doi.org/10.1016/j.intimp.2015.02.012.
Wang, X., Lv, S., Sun, J., Zhang, M., Zhang, L., Sun, Y., Zhao, Z., Wang, D., Zhao, X., & Zhang, J. (2022). Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Report, 27(1), 270-278. https://doi.org/10.1080/13510002.2022.2143114.
World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR). (2007). Food, nutrition, physical activity, and the prevention of cancer: A global perspective. AICR.
Weichelt, U., Cay, R., Schmitz, T., Strauss, E., Sifringer, M., Buhrer, C., & Endesfelder, S. (2013). Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine. The European Respiratory Journal, 41(4), 966-973. https://doi.org/10.1183/09031936.00012412.
Weir, R. L., & Hruska, R. E. (1983). Interaction between methylxanthines and the benzodiazepine receptor. Archives Internationales de Pharmacodynamie et de Thérapie, 265(1), 42-48.
Wendler, C. C., Amatya, S., McClaskey, C., Ghatpande, S., Fredholm, B. B., & Rivkees, S. A. (2007). A1 adenosine receptors play an essential role in protecting the embryo against hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9697-9702. https://doi.org/10.1073/pnas.0703557104.
Wentz, C. T., & Magavi, S. S. (2009). Caffeine alters proliferation of neuronal precursors in the adult hippocampus. Neuropharmacology, 56(6-7), 994-1000. https://doi.org/10.1016/j.neuropharm.2009.02.002.
White, J. R., Jr., Padowski, J. M., Zhong, Y., Chen, G., Luo, S., Lazarus, P., Layton, M. E., & McPherson, S. (2016). Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clinical Toxicology, 54(4), 308-312.
Willson, C. (2018). The clinical toxicology of caffeine: A review and case study. Toxicology Reports, 5, 1140-1152. https://doi.org/10.1016/j.toxrep.2018.11.002.
Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2012). Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. NeuroImage, 63(1), 356-364. https://doi.org/10.1016/j.neuroimage.2012.06.035.
Wu, S. E., & Chen, W. L. (2020). Exploring the association between urine caffeine metabolites and urine flow rate: A cross-sectional study. Nutrients, 12(9), 2803. https://doi.org/10.3390/nu12092803.
Wu, W., Tong, Y., Zhao, Q., Yu, G., Wei, X., & Lu, Q. (2015). Coffee consumption and bladder cancer: A meta-analysis of observational studies. Scientific Reports, 5, 9051. https://doi.org/10.1038/srep09051.
Xie, J., Ponuwei, G. A., Moore, C. E., Willars, G. B., Tee, A. R., & Herbert, T. P. (2011). cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cellular Signalling, 23(12), 1927-1935. https://doi.org/10.1016/j.cellsig.2011.06.025.
Xu, F., Liua, P. Y., Pekar, J. J., & Lu, H. Z. (2015). Does acute caffeine ingestion alter brain metabolism in young adults? NeuroImage, 110, 39-47. https://doi.org/10.1016/j.neuroimage.2015.01.046.
Xu, H., Hu, L., Liu, T., Chen, F., Li, J., Xu, J., Jiang, L., Xiang, Z., Wang, X., & Sheng, J. (2020). Caffeine targets G6PDH to disrupt redox homeostasis and inhibit renal cell carcinoma proliferation. Frontiers in Cell and Developmental Biology, 8, 556162.
Xu, Y., Ma, L., Liu, F., Yao, L., Wang, W. C., Yang, S. Z., & Han, T. T. (2023). Lavender essential oil fractions alleviate sleep disorders induced by the combination of anxiety and caffeine in mice. Journal of Ethnopharmacology, 302, 115868. https://doi.org/10.1016/j.jep.2022.115868.
Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., & Ohno, S. (2001). Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes & Development, 15(17), 2215-2228. https://doi.org/10.1101/gad.913001.
Yamauchi, R., Kobayashi, M., Matsuda, Y., Ojika, M., Shigeoka, S., Yamamoto, Y., Tou, Y., Inoue, T., Katagiri, T., Murai, A., & Horio, F. (2010). Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-ay mice. Journal of Agricultural and Food Chemistry, 58(9), 5597-5603. https://doi.org/10.1021/jf904062c.
Yang, H., Rouse, J., Lukes, L., Lancaster, M., Veenstra, T., Zhou, M., Shi, Y., Park, Y. G., & Hunter, K. (2004). Caffeine suppresses metastasis in a transgenic mouse model: A prototype molecule for prophylaxis of metastasis. Clinical & Experimental Metastasis, 21(8), 719-735. https://doi.org/10.1007/s10585-004-8251-4.
Yang, J., Nie, J., Ma, X. L., Wei, Y. Q., Peng, Y., & Wei, X. W. (2019). Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Molecular Cancer, 18, 26. https://doi.org/10.1186/s12943-019-0954-x.
Yang, L., Yu, X. F., Zhang, Y. J., Liu, N., Xue, X. D., & Fu, J. H. (2022). Caffeine treatment started before injury reduces hypoxic-ischemic white-matter damage in neonatal rats by regulating phenotypic microglia polarization. Pediatric Research, 92(6), 1543-1554. https://doi.org/10.1038/s41390-021-01924-6.
Yokokawa, T., Hashimoto, T., & Iwanaka, N. (2021). Caffeine increases myoglobin expression via the cyclic AMP pathway in L6 myotubes. Physiological Reports, 9(9), e14869. https://doi.org/10.14814/phy2.14869.
Yoo, S., & Dynan, W. S. (1999). Geometry of a complex formed by double strand break repair proteins at a single DNA end: Recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Research, 27(24), 4679-4686.
Youngberg, M. R., Karpov, I. O., Begley, A., Pollock, B. G., & Buysse, D. J. (2011). Clinical and physiological correlates of caffeine and caffeine metabolites in primary insomnia. Journal of Clinical Sleep Medicine, 7(2), 196-203.
Yu, L. Q., Coelho, J. E., Zhang, X. L., Fu, Y. T., Tillman, A., Karaoz, U., Fredholm, B. B., Weng, Z., & Chen, J. F. (2009). Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining a(2A) receptor knockout mice with microarray profiling. Physiological Genomics, 37(3), 199-210. https://doi.org/10.1152/physiolgenomics.90353.2008.
Yu, N. Y., Bieder, A., Raman, A., Mileti, E., Katayama, S., Einarsdottir, E., Fredholm, B. B., Falk, A., Tapia-Páez, I., Daub, C. O., & Kere, J. (2017). Acute doses of caffeine shift nervous system cell expression profiles toward promotion of neuronal projection growth. Scientific Reports, 7(1), 11458. https://doi.org/10.1038/s41598-017-11574-6.
Yun, J. W., Shin, E. S., Cho, S. Y., Kim, S. H., Kim, C. W., Lee, T. R., & Kim, B. H. (2008). The effects of BADGE and caffeine on the time-course response of adiponectin and lipid oxidative enzymes in high fat diet-fed C57BL/6J mice: Correlation with reduced adiposity and steatosis. Experimental Animals, 57(5), 461-469. https://doi.org/10.1538/expanim.57.461.
Zampelas, A., Panagiotakos, D. B., Pitsavos, C., Chrysohoou, C., & Stefanadis, C. (2004). Associations between coffee consumption and inflammatory markers in healthy persons: The ATTICA study. American Journal of Clinical Nutrition, 80(4), 862-867. https://doi.org/10.1093/ajcn/80.4.862.
Zapata, F. J., Rebollo-Hernanz, M., Novakofski, J. E., Nakamura, M. T., & Gonzalez de Mejia, E. (2020). Caffeine, but not other phytochemicals, in mate tea (Ilex paraguariensis St. Hilaire) attenuates high-fat-high-sucrose-diet-driven lipogenesis and body fat accumulation. Journal of Functional Foods, 64, 103646. https://doi.org/10.1016/j.jff.2019.103646.
Zhang, J., Liu, T., Gupta, A., Spincemaille, P., Nguyen, T. D., & Wang, Y. (2015). Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM). Magnetic Resonance in Medicine, 74(4), 945-952. https://doi.org/10.1002/mrm.25463.
Zhang, Z., Hu, G., Caballero, B., Appel, L., & Chen, L. (2011). Habitual coffee consumption and risk of hypertension: A systematic review and meta-analysis of prospective observational studies. The American Journal of Clinical Nutrition, 93(6), 1212-1219. https://doi.org/10.3945/ajcn.110.004044.
Zhao, L. G., Li, Z. Y., Feng, G. S., Ji, X. W., Tan, Y. T., Li, H. L., Gunter, M. J., & Xiang, Y. B. (2020). Coffee drinking and cancer risk: An umbrella review of meta-analyses of observational studies. BMC Cancer, 20(1), 101. https://doi.org/10.1186/s12885-020-6561-9.
Zhao, W., Ma, L., Cai, C., & Gong, X. (2019). Caffeine inhibits NLRP3 Inflammasome activation by suppressing MAPK/NF-kappaB and A2aR Signaling in LPS-induced THP-1 macrophages. International Journal of Biological Sciences, 15(8), 1571-1581. https://doi.org/10.7150/ijbs.34211.
Zhao, Y., Ren, J., Hillier, J., Lu, W., & Jones, E. Y. (2020). Caffeine inhibits Notum activity by binding at the catalytic pocket. Communications Biology, 3(1), 555. https://doi.org/10.1038/s42003-020-01286-5.
Zhao, Y., Wu, Z., Zhang, Y., & Zhu, L. (2013). HY-1 induces G(2)/M cell cycle arrest in human colon cancer cells through the ATR-Chk1-Cdc25C and Weel pathways. Cancer Science, 104(8), 1062-1066. https://doi.org/10.1111/cas.12182.
Zhu, S., Noviello, C. M., Teng, J., Walsh, R. M., Jr., Kim, J. J., & Hibbs, R. E. (2018). Structure of a human synaptic GABAA receptor. Nature, 559(7712), 67-72. https://doi.org/10.1038/s41586-018-0255-3.
Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell & Bioscience, 10, 31. https://doi.org/10.1186/s13578-020-00396-1.
Zulli, A., Smith, R. M., Kubatka, P., Novak, J., Uehara, Y., Loftus, H., Qaradakhi, T., Pohanka, M., Kobyliak, N., Zagatina, A., Klimas, J., Hayes, A., La Rocca, G., Soucek, M., & Kruzliak, P. (2016). Caffeine and cardiovascular diseases: Critical review of current research. European Journal of Nutrition, 55(4), 1331-1343. https://doi.org/10.1007/s00394-016-1179-z. -->
Grant Information: RVO Institute of Biotechnology of the Czech Academy of Sciences v.v.i., Institutional Research Concept; 86652036 Institute of Biotechnology of the Czech Academy of Sciences v.v.i., Institutional Research Concept; 2021R1C1C1006336 Basic Science Research Program, South Korea; 2021M3A9G8022959 Bio & Medical Technology Development Program of the Ministry of Science, ICT (NRF), South Korea
Contributed Indexing: Keywords: caffeine; caffeinism; health; molecular receptors; pharmacology
Substance Nomenclature: 3G6A5W338E (Caffeine)
Entry Date(s): Date Created: 20230907 Date Completed: 20231216 Latest Revision: 20231216
Update Code: 20231217
DOI: 10.1002/ptr.8000
PMID: 37679309
Autor: Song X; Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China., Kirtipal N; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea., Lee S; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea., Malý P; Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic., Bharadwaj S; Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic.
Jazyk: angličtina
Zdroj: Phytotherapy research : PTR [Phytother Res] 2023 Dec; Vol. 37 (12), pp. 5558-5598. Date of Electronic Publication: 2023 Sep 07.
DOI: 10.1002/ptr.8000
Abstrakt: Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
(© 2023 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.)
Databáze: MEDLINE