A rapid LC-MS/MS method for multi-class identification and quantification of cyanotoxins.
Autor: | Jacinavicius FR; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil., Valverde Campos TG; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil., Passos LS; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil., Pinto E; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; Center for Carbon Research in Tropical Agriculture (CCARBON - CEPID), University of São Paulo, São Paulo, Brazil. Electronic address: ernani@usp.br., Geraldes V; Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | Toxicon : official journal of the International Society on Toxinology [Toxicon] 2023 Oct; Vol. 234, pp. 107282. Date of Electronic Publication: 2023 Sep 05. |
DOI: | 10.1016/j.toxicon.2023.107282 |
Abstrakt: | Cyanobacteria can form harmful blooms in specific environmental conditions due to certain species producing toxic metabolites known as cyanotoxins. These toxins pose significant risks to public health and the environment, making it critical to identify and quantify them in food and water sources to avoid contamination. However, current screening methods only focus on a single class of cyanotoxins, limiting their effectiveness. Thus, fast and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed to analyze eighteen cyanotoxins simultaneously. A simplified extraction procedure using lyophilized samples of cyanobacterial biomass was also used, eliminating the need for traditional solid-phase extraction methods. This method uses multiple reaction monitoring and allows accurate determination and quantification of eighteen cyanotoxins, including anatoxin-a, homoanatoxin-a, cylindrospermopsin, deoxy-cylindrospermopsin, nodularin, guanitoxin, seven microcystins (RR, [D-Asp3] RR, LA, LR, LY, LW, and YR), and five saxitoxins (gonyautoxins - GTX-1&4, GTX-2&3, GTX-5), decarbamoylgonyautoxin (dcGTX-2&3), and N-Sulfocarbamoylgonyautoxin (C1&C2), all in a short acquisition time of 8 min. Therefore, this method provides a simple and efficient approach to identify and quantify harmful compounds produced by cyanobacteria. Hence, this represents the first method to detecting guanitoxin among cyanotoxins. By expanding the range of toxins analyzed, this method can help ensure high-quality food and drinking water and protect recreational users from exposure to cyanotoxins. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |