Chemokine receptor 5 signaling in PFC mediates stress susceptibility in female mice.

Autor: Lin HY, Cathomas F, Li L, Cuttoli RD, Guevara C, Bayrak CS, Wang Q, Gupta S, Chan KL, Shimo Y, Parise LF, Yuan C, Aubry AV, Chen F, Wong J, Morel C, Huntley GW, Zhang B, Russo SJ, Wang J
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2023 Aug 21. Date of Electronic Publication: 2023 Aug 21.
DOI: 10.1101/2023.08.18.553789
Abstrakt: Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.
Databáze: MEDLINE