Effect of the essential amino acid-nitrogen to total nitrogen ratio on lysine requirement for nitrogen retention in growing pigs.
Autor: | Camiré CM; Prairie Swine Centre, Inc., Saskatoon, SK, CanadaS7K 3J4., Wellington MO; Swine Research Centre, Trouw Nutrition R&D, Boxmeer 5831JN, The Netherlands., Panisson JC; Prairie Swine Centre, Inc., Saskatoon, SK, CanadaS7K 3J4.; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada., Rodrigues LA; Research and Discovery, Zinpro Corporation, Eden Prairie, MN 55344, USA., Shoveller AK; Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 1Y2., Columbus DA; Prairie Swine Centre, Inc., Saskatoon, SK, CanadaS7K 3J4.; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of animal science [J Anim Sci] 2023 Jan 03; Vol. 101. |
DOI: | 10.1093/jas/skad298 |
Abstrakt: | Low protein diets supplemented with essential amino acids (EAA) fed to pigs reduce the excess supply of EAA and nitrogen (N). However, low protein diets may become limiting in non-essential amino acids (NEAA) and N, thus affecting the utilization of EAA for N retention. It has been suggested that the EAA-N:total N (E:T) ratio can give an indication of dietary N sufficiency. An N-balance study was conducted to determine the effect of E:T ratio on the Lys requirement for maximum N retention. A total of 80 growing barrows (19.3 ± 0.21 kg initial body weight) were randomly assigned to 1 of 10 diets (n = 8) in 8 blocks in a 2 × 5 factorial arrangement. Diets consisted of a low ratio (LR; E:T of 0.33) or a high ratio (HR; E:T of 0.36) with graded Lys content (0.82%, 0.92%, 1.02%, 1.12%, and 1.22% standardized ileal digestible [SID]). After a 7-d adaptation, a 4-d N-balance collection was conducted. Blood samples were obtained on d 2 of the collection period 2 h after the morning meal for plasma urea N (PUN) analysis. Data were analyzed using the MIXED model procedure with fixed effects of ratio (n = 2), Lys (n = 5), and their interactions. The experimental block (room) was included as a random effect (n = 8). The SID Lys requirement was estimated using PROC NLIN linear broken-line breakpoint model. There was a significant interaction between E:T ratio and Lys (P < 0.01), where LR diets had a higher N retention than HR diets, while increasing Lys linearly increased N retention (P = 0.01) in both HR and LR diets. The marginal efficiency of utilizing SID Lys (P < 0.01) reduced with increasing Lys content, while the efficiency of utilizing N (P < 0.05) increased as Lys increased. The SID Lys required to maximize N retention of pigs fed HR diets was estimated at 1.08% (R2 = 0.61) and LR diets at 1.21% (R2 = 0.80). The current results indicate that N may be limiting in diets with a high E:T ratio, limiting N retention. Supplying additional dietary N, as intact protein, can increase N retention, resulting in a greater Lys requirement. (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.) |
Databáze: | MEDLINE |
Externí odkaz: |