Ultrafast X-Ray Scattering Reveals Composite Amplitude Collective Mode in the Weyl Charge Density Wave Material (TaSe_{4})_{2}I.

Autor: Nguyen QL; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Duncan RA; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Orenstein G; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Huang Y; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Department of Applied Physics, Stanford University, Stanford, California 94305, USA., Krapivin V; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Department of Applied Physics, Stanford University, Stanford, California 94305, USA., de la Peña G; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Ornelas-Skarin C; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Department of Applied Physics, Stanford University, Stanford, California 94305, USA., Reis DA; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Department of Applied Physics, Stanford University, Stanford, California 94305, USA.; Department of Photon Science, Stanford University, Stanford, California 94305, USA., Abbamonte P; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA., Bettler S; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA., Chollet M; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Hoffmann MC; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Hurley M; Department of Physics, Arizona State University, Tempe, Arizona 85281, USA., Kim S; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA., Kirchmann PS; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Kubota Y; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan., Mahmood F; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA., Miller A; Department of Physics, Arizona State University, Tempe, Arizona 85281, USA., Osaka T; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan., Qu K; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA., Sato T; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Shoemaker DP; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA., Sirica N; Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA., Song S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Stanton J; Department of Physics, Arizona State University, Tempe, Arizona 85281, USA., Teitelbaum SW; Department of Physics, Arizona State University, Tempe, Arizona 85281, USA., Tilton SE; Department of Physics, Arizona State University, Tempe, Arizona 85281, USA., Togashi T; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan., Zhu D; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA., Trigo M; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2023 Aug 18; Vol. 131 (7), pp. 076901.
DOI: 10.1103/PhysRevLett.131.076901
Abstrakt: We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.
Databáze: MEDLINE