Quantum-enhanced sensing on optical transitions through finite-range interactions.

Autor: Franke J; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria., Muleady SR; JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA.; Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA., Kaubruegger R; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.; Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria., Kranzl F; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria., Blatt R; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria., Rey AM; JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA. arey@jila.colorado.edu.; Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA. arey@jila.colorado.edu., Joshi MK; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria., Roos CF; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria. christian.roos@uibk.ac.at.; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria. christian.roos@uibk.ac.at.
Jazyk: angličtina
Zdroj: Nature [Nature] 2023 Sep; Vol. 621 (7980), pp. 740-745. Date of Electronic Publication: 2023 Aug 30.
DOI: 10.1038/s41586-023-06472-z
Abstrakt: The control over quantum states in atomic systems has led to the most precise optical atomic clocks so far 1-3 . Their sensitivity is bounded at present by the standard quantum limit, a fundamental floor set by quantum mechanics for uncorrelated particles, which can-nevertheless-be overcome when operated with entangled particles. Yet demonstrating a quantum advantage in real-world sensors is extremely challenging. Here we illustrate a pathway for harnessing large-scale entanglement in an optical transition using 1D chains of up to 51 ions with interactions that decay as a power-law function of the ion separation. We show that our sensor can emulate many features of the one-axis-twisting (OAT) model, an iconic, fully connected model known to generate scalable squeezing 4 and Greenberger-Horne-Zeilinger-like states 5-8 . The collective nature of the state manifests itself in the preservation of the total transverse magnetization, the reduced growth of the structure factor, that is, spin-wave excitations (SWE), at finite momenta, the generation of spin squeezing comparable with OAT (a Wineland parameter 9,10 of -3.9 ± 0.3 dB for only N = 12 ions) and the development of non-Gaussian states in the form of multi-headed cat states in the Q-distribution. We demonstrate the metrological utility of the states in a Ramsey-type interferometer, in which we reduce the measurement uncertainty by -3.2 ± 0.5 dB below the standard quantum limit for N = 51 ions.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
Databáze: MEDLINE