Tailoring the Electron and Hole Landé Factors in Lead Halide Perovskite Nanocrystals by Quantum Confinement and Halide Exchange.

Autor: Nestoklon MO; Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany., Kirstein E; Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany., Yakovlev DR; Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany.; Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia., Zhukov EA; Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany., Glazov MM; Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia., Semina MA; Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia., Ivchenko EL; Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia., Kolobkova EV; ITMO University, 199034 St. Petersburg, Russia.; St. Petersburg State Institute of Technology, 190013 St. Petersburg, Russia., Kuznetsova MS; Spin Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg, Russia., Bayer M; Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany.
Jazyk: angličtina
Zdroj: Nano letters [Nano Lett] 2023 Sep 13; Vol. 23 (17), pp. 8218-8224. Date of Electronic Publication: 2023 Aug 30.
DOI: 10.1021/acs.nanolett.3c02349
Abstrakt: The tunability of the optical properties of lead halide perovskite nanocrystals makes them highly appealing for applications. Halide anion exchange and quantum confinement enable tailoring of the band gap. For spintronics, the Landé g -factors of electrons and holes are essential. Using empirical tight-binding and k · p methods, we calculate them for nanocrystals of all-inorganic lead halide perovskites CsPb X 3 ( X = I, Br, Cl). The hole g -factor band gap dependence follows the universal law found for bulk perovskites, while for electrons, a considerable modification is predicted. Based on the k · p analysis, we conclude that this difference arises from the interaction of the bottom conduction band with the spin-orbit split electron states. These predictions are confirmed experimentally for electron and hole g -factors in CsPbI 3 nanocrystals in a glass matrix, measured by time-resolved Faraday ellipticity in a magnetic field at cryogenic temperatures.
Databáze: MEDLINE