Towards hippocampal navigation for brain-computer interfaces.
Autor: | Saal J; Maastricht University, Universiteitssingel 50, 6299 ER, Maastricht, The Netherlands. Jeremy.Saal@ucsf.edu.; University of California, San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA. Jeremy.Saal@ucsf.edu., Ottenhoff MC; Maastricht University, Universiteitssingel 50, 6299 ER, Maastricht, The Netherlands., Kubben PL; Maastricht University, Universiteitssingel 50, 6299 ER, Maastricht, The Netherlands., Colon AJ; Academic Center for Epileptology Kempenhaeghe/MUMC, Kempenhaeghe, Heeze, The Netherlands., Goulis S; Maastricht University, Universiteitssingel 50, 6299 ER, Maastricht, The Netherlands., van Dijk JP; Academic Center for Epileptology Kempenhaeghe/MUMC, Kempenhaeghe, Heeze, The Netherlands., Krusienski DJ; Virginia Commonwealth University, Richmond, VA, USA., Herff C; Maastricht University, Universiteitssingel 50, 6299 ER, Maastricht, The Netherlands. c.Herff@maastrichtuniversity.nl. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2023 Aug 28; Vol. 13 (1), pp. 14021. Date of Electronic Publication: 2023 Aug 28. |
DOI: | 10.1038/s41598-023-40282-7 |
Abstrakt: | Automatic wheelchairs directly controlled by brain activity could provide autonomy to severely paralyzed individuals. Current approaches mostly rely on non-invasive measures of brain activity and translate individual commands into wheelchair movements. For example, an imagined movement of the right hand would steer the wheelchair to the right. No research has investigated decoding higher-order cognitive processes to accomplish wheelchair control. We envision an invasive neural prosthetic that could provide input for wheelchair control by decoding navigational intent from hippocampal signals. Navigation has been extensively investigated in hippocampal recordings, but not for the development of neural prostheses. Here we show that it is possible to train a decoder to classify virtual-movement speeds from hippocampal signals recorded during a virtual-navigation task. These results represent the first step toward exploring the feasibility of an invasive hippocampal BCI for wheelchair control. (© 2023. Springer Nature Limited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |