A convolutional neural network for bleeding detection in capsule endoscopy using real clinical data.
Autor: | Turck D; Department of Medicine, University of Cologne, Cologne, Germany., Dratsch T; Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany., Schröder L; Department of Medicine, University of Cologne, Cologne, Germany., Lorenz F; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany., Dinter J; Gastroenterologische Schwerpunktpraxis Stähler, Cologne, Germany., Bürger M; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany., Schiffmann L; Department of General, Visceral, Cancer, and Transplant Surgery, University Hospital Cologne, Cologne, Germany., Kasper P; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany., Allo G; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany., Goeser T; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany., Chon SH; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany.; Department of General, Visceral, Cancer, and Transplant Surgery, University Hospital Cologne, Cologne, Germany., Nierhoff D; Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy [Minim Invasive Ther Allied Technol] 2023 Dec; Vol. 32 (6), pp. 335-340. Date of Electronic Publication: 2023 Aug 28. |
DOI: | 10.1080/13645706.2023.2250445 |
Abstrakt: | Background: The goal of the present study was to develop a convolutional neural network for the detection of bleedings in capsule endoscopy videos using realistic clinical data from one single-centre. Methods: Capsule endoscopy videos from all 133 patients (79 male, 54 female; mean Results: The overall accuracy of the model for the detection of bleedings was 90.6% [95%CI: 89.4%-91.7%], with a sensitivity of 89.4% [95%CI: 87.6%-91.2%] and a specificity of 91.7% [95%CI: 90.1%-93.2%]. Conclusion: Our results show that neural networks can detect bleedings in capsule endoscopy videos under realistic, clinical conditions with an accuracy of 90.6%, potentially reducing reading time per capsule and helping to improve diagnostic accuracy. |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |