Study of Effective Stress Intensity Factor through the CJP Model Using Full-Field Experimental Data.

Autor: Camacho-Reyes A; Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, 23071 Jaen, Spain., Vasco-Olmo JM; Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, 23071 Jaen, Spain., Gómez Gonzales GL; Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, 23071 Jaen, Spain., Diaz FA; Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, 23071 Jaen, Spain.
Jazyk: angličtina
Zdroj: Materials (Basel, Switzerland) [Materials (Basel)] 2023 Aug 20; Vol. 16 (16). Date of Electronic Publication: 2023 Aug 20.
DOI: 10.3390/ma16165705
Abstrakt: In this work, the Christopher-James-Patterson crack tip field model is used to infer and assess the effective stress intensity factor ranges measured from thermoelastic and digital image correlation data. The effective stress intensity factor range obtained via the Christopher-James-Patterson model, which provides an effective rationalization of fatigue crack growth rates, is separated into two components representing the elastic and retardation components to assess shielding phenomena on growing fatigue cracks. For this analysis, fatigue crack growth tests were performed on Compact-Tension specimens manufactured in pure grade 2 titanium for different stress ratio levels, and digital image correlation and thermoelastic measurements were made for different crack lengths. A good agreement (~2% average deviation) was found between the results obtained via thermoelastic stress analysis and digital image correlation indicating the validity of the Christopher-James-Patterson model to investigate phenomena in fracture mechanics where plasticity plays an important role. The results show the importance of considering crack-shielding effects using the Christopher-James-Patterson model beyond considering an exclusive crack closure influence.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje