Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure.

Autor: Dong S; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany. dong@fhi-berlin.mpg.de.; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. dong@fhi-berlin.mpg.de., Beaulieu S; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.; Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France., Selig M; Nichtlineare Optik und Quantenelektronik, Institut für Theoretische Physik, Technische Universität Berlin, 10623, Berlin, Germany., Rosenzweig P; Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany., Christiansen D; Nichtlineare Optik und Quantenelektronik, Institut für Theoretische Physik, Technische Universität Berlin, 10623, Berlin, Germany., Pincelli T; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany., Dendzik M; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.; Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19, Stockholm, Sweden., Ziegler JD; Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany.; Photonics Laboratory, ETH Zürich, 8093, Zürich, Switzerland., Maklar J; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany., Xian RP; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.; Department of Statistical Sciences, University of Toronto, 700 University Avenue, Toronto, ON, M5G 1Z5, Canada., Neef A; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany., Mohammed A; Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany., Schulz A; Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany., Stadler M; Institute of Semiconductor Optics and Functional Interfaces, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany., Jetter M; Institute of Semiconductor Optics and Functional Interfaces, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany., Michler P; Institute of Semiconductor Optics and Functional Interfaces, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany., Taniguchi T; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan., Watanabe K; Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan., Takagi H; Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany.; Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan.; Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany., Starke U; Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany., Chernikov A; Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany., Wolf M; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany., Nakamura H; Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany.; Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA., Knorr A; Nichtlineare Optik und Quantenelektronik, Institut für Theoretische Physik, Technische Universität Berlin, 10623, Berlin, Germany., Rettig L; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany. rettig@fhi-berlin.mpg.de., Ernstorfer R; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany. ernstorfer@fhi-berlin.mpg.de.; Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623, Berlin, Germany. ernstorfer@fhi-berlin.mpg.de.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2023 Aug 19; Vol. 14 (1), pp. 5057. Date of Electronic Publication: 2023 Aug 19.
DOI: 10.1038/s41467-023-40815-8
Abstrakt: Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe 2 /graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe 2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe 2 . By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe 2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.
(© 2023. Springer Nature Limited.)
Databáze: MEDLINE