Development of a Selective and High Affinity Radioligand, [ 3 H]VU6013720, for the M 4 Muscarinic Receptor.

Autor: Qi A; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Kling HE; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Billard N; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Rodriguez AL; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Peng L; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Dickerson JW; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Engers JL; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Bender AM; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Moehle MS; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Lindsley CW; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Rook JM; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida., Niswender CM; Department of Pharmacology and Warren Center for Neuroscience Drug Discovery (A.Q., H.E.K., N.B., A.L.R., L.P., J.W.D., J.L.E., A.M.B., C.W.L., J.M.R., C.M.N.) and Department of Chemistry (C.W.L.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N); Vanderbilt Brain Institute (C.M.N.) and Vanderbilt Institute of Chemical Biology (C.W.L., C.M.N.),Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration (M.S.M.), University of Florida, Gainesville, Florida.
Jazyk: angličtina
Zdroj: Molecular pharmacology [Mol Pharmacol] 2023 Nov; Vol. 104 (5), pp. 195-202. Date of Electronic Publication: 2023 Aug 18.
DOI: 10.1124/molpharm.122.000643
Abstrakt: M 4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M 4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M 4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M 4 receptor antagonist, [ 3 H]VU6013720, with high affinity (pK d of 9.5 ± 0.2 at rat M 4 , 9.7 at mouse M 4 , and 10 ± 0.1 at human M 4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [ 3 H]VU6013720 from M 4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [ 3 H]VU6013720 is the first highly selective antagonist radioligand for the M 4 receptor, representing a useful tool for studying the basic biology of M 4 as well for the support of M 4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [ 3 H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M 4 receptor that can be used to quantify M 4 protein expression in vivo and probe the selective interactions of acetylcholine with M 4 versus the other members of the muscarinic receptor family.
(Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics.)
Databáze: MEDLINE