Characteristics Analysis of Plasticized Polyvinyl Chloride Gel-Based Microlens at Different Temperatures.
Autor: | Li X; College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China., Lin M; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China., Ali I; College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China., Ali A; Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea.; Department of Biomedical Engineering, Electrical Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan., Irfan M; Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia., Soomro TA; Department of Electronic Engineering, Quaid-e-Awam University of Engineering, Science and Technology Larkana Campus, Nawabshah 67480, Pakistan., Choi SH; Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea., Yang W; College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China., Li H; College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China., Rahman S; Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia., Faraj Mursal SN; Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia., Jazem Ghanim AA; Civil Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia., Alyahyawy O; King Abdulaziz Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia., Al Thagafi MA; King Abdulaziz Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia. |
---|---|
Jazyk: | angličtina |
Zdroj: | ACS omega [ACS Omega] 2023 Jul 26; Vol. 8 (31), pp. 28924-28931. Date of Electronic Publication: 2023 Jul 26 (Print Publication: 2023). |
DOI: | 10.1021/acsomega.3c04546 |
Abstrakt: | Temperature plays a crucial role in the preparation of polyvinyl chloride (PVC) gels for optical applications. Incorrect temperature selection can lead to various issues such as poor surface roughness, inadequate light transmission, and insufficient solution for optical devices. To address this challenge, this study focuses on the preparation of PVC gel samples by combining PVC powder ( n = 3000), eco-friendly dibutyl adipate, and tetrahydrofuran at different stirring temperatures ranging from 40 to 70 °C. The PVC gel preparation process is categorized into four groups ( T 40, T 50, T 60, and T 70) based on the mixing temperatures, employing a controlled test method with specific temperature conditions. The prepared PVC gel samples are then subjected to analysis to evaluate various properties including surface morphology, tensile strength, light transmittance, and electrical response time. Among the samples, the PVC gel prepared at 60 °C (referred to as T60) exhibits excellent optical properties, with a transmittance of 91.2% and a tensile strength of 2.07 MPa. These results indicate that 60 °C is an optimal reaction temperature. Notably, the PVC gel microlenses produced at this temperature achieve their maximum focal length (ranging from -8 to -20 mm) within approximately 60 s, and they recover their initial state within around 80 s after the power is switched off. This focal length achievement is twice as fast as reported in previous studies on microlenses. It is observed that the reaction temperature significantly influences the solubility of the resin-based raw materials and the homogeneity of the gel. Consequently, these findings open up possibilities for utilizing PVC gel microlenses in novel commercial optics applications, thanks to their desirable properties. Competing Interests: The authors declare no competing financial interest. (© 2023 The Authors. Published by American Chemical Society.) |
Databáze: | MEDLINE |
Externí odkaz: |