Identification of pressed and extracted vegetable oils by headspace GC-MS.
Autor: | Liu Y; Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China., Chai Z; Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China., Haixia Y; Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Heliyon [Heliyon] 2023 Jul 21; Vol. 9 (8), pp. e18532. Date of Electronic Publication: 2023 Jul 21 (Print Publication: 2023). |
DOI: | 10.1016/j.heliyon.2023.e18532 |
Abstrakt: | Edible vegetable oils are produced either by mechanical pressing or extraction. Although pressing retains the inherent flavor and nutritional value of the oil, the oil yield is low and the process expensive. Extraction methods have high oil yields, low processing costs, and economic benefits; however, No. 6 solvent, which may pose potential risks to human health, is commonly used in the extraction and cleaning process. Differentiating extracted oil containing these solvents from pressed oil, for quality control, based on visual appearance is difficult. Hence, in this study, an identification method using the characteristic components of solvent No. 6 under optimized headspace Gas chromatography-mass spectrometry (GC-MS) conditions was established. It also provided a reference for quality control of industrial production by estimating the amount of solvent present in the oil. Results showed that, in addition to five main components (2-methylpentane, 3-methylpentane, and n -hexane, Methylcyclopentane, Cyclohexane), accounting for 97% of the solvent, No. 6 solvent also contains 16 types of organic substances, such as olefins, aromatic hydrocarbons, and polycyclic aromatic hydrocarbons. Under optimized headspace GC-MS conditions (headspace sampler equilibrium temperature = 150 °C), the No. 6 solvent exhibits high linearity over a concentration range of 0.05-1 mg/kg with a correlation coefficient of 0.999 and a detection limit of 0.01 mg/kg. Pressed and extracted oils can be determined as follows: If three or fewer main components of the No. 6 solvent are detected, and the total content of No. 6 solvent is less than 0.5 mg/kg, it is a pressed oil; if four or more main components of No. 6 solvent are detected, or the total content of No. 6 solvent is ≥0.5 mg/kg, it is confirmed as an extracted oil. Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper (© 2023 The Authors. Published by Elsevier Ltd.) |
Databáze: | MEDLINE |
Externí odkaz: |