Human DNA ligases I and IIIα as determinants of accuracy and efficiency of base excision DNA repair.

Autor: Moor NA; Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia., Vasil'eva IA; Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia., Lavrik OI; Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia. Electronic address: lavrik@niboch.nsc.ru.
Jazyk: angličtina
Zdroj: Biochimie [Biochimie] 2024 Apr; Vol. 219, pp. 84-95. Date of Electronic Publication: 2023 Aug 10.
DOI: 10.1016/j.biochi.2023.08.007
Abstrakt: Mammalian Base Excision Repair (BER) DNA ligases I and IIIα (LigI, LigIIIα) are major determinants of DNA repair fidelity, alongside with DNA polymerases. Here we compared activities of human LigI and LigIIIα on specific and nonspecific substrates representing intermediates of distinct BER sub-pathways. The enzymes differently discriminate mismatches in the nicked DNA, depending on their identity and position, but are both more selective against the 3'-end non-complementarity. LigIIIα is less active than LigI in premature ligation of one-nucleotide gapped DNA and more efficiently discriminates misinsertion products of DNA polymerase β-catalyzed gap filling, that reinforces a leading role of LigIIIα in the accuracy of short-patch BER. LigI and LigIIIα reseal the intermediate of long-patch BER containing an incised synthetic AP site (F) with different efficiencies, depending on the DNA sequence context, 3'-end mismatch presence and coupling of the ligation reaction with DNA repair synthesis. Processing of this intermediate in the absence of flap endonuclease 1 generates non-canonical DNAs with bulged F site, which are very inefficiently repaired by AP endonuclease 1 and represent potential mutagenic repair products. The extent of conversion of the 5'-adenylated intermediates of specific and nonspecific substrates is revealed to depend on the DNA sequence context; a higher sensitivity of LigI to the sequence is in line with the enzyme structural feature of DNA binding. LigIIIα exceeds LigI in generation of potential abortive ligation products, justifying importance of XRCC1-mediated coordination of LigIIIα and aprataxin activities for the efficient DNA repair.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.)
Databáze: MEDLINE