Influence of salinity on microalgae-bacteria symbiosis treating shrimp farming wastewater.

Autor: Vo TK; Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city, 700000, Viet Nam., Hoang QH; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam., Ngo HH; School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia., Tran CS; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam., Ninh TNN; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam., Le SL; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam., Nguyen AT; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam., Pham TT; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam., Nguyen TB; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan., Lin C; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan., Bui XT; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam. Electronic address: bxthanh@hcmut.edu.vn.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2023 Dec 01; Vol. 902, pp. 166111. Date of Electronic Publication: 2023 Aug 09.
DOI: 10.1016/j.scitotenv.2023.166111
Abstrakt: Shrimp farming has strongly developed in recent years, and became an important economic sector that helps create jobs and increase incomes for Vietnamese. However, the aquatic environment has also been greatly affected by the development due to the amount of wastewater discharged from shrimp farms. Among biological processes used for treating shrimp farming wastewater, the application of microalgae-bacteria co-culture is considered high potential due to its treatment and energy saving. Consequently, a photobioreactor operated with microalgae-bacteria co-culture was employed to treat shrimp farming wastewater. The salinity of wastewater and the operating condition (ratio of biomass retention time and hydraulic retention time, BRT/HRT) are the major factors affecting pollutant removal. Thus, this study investigated the effects of salinities of 0.5-20 ppt and BRT/HRT ratios of 1.5-16 on the removal performance. The results indicated that the nutrient removal was reduced when PBR operated under salinity over than 10 ppt and BRT/HRT over 5.5. Particularly, the nitrogen and phosphorus removal rates were achieved 6.56 ± 1.33 gN m -3 d -1 and 1.49 ± 0.59 gP m -3 d -1 , and the removal rates decreased by 2-4 times under a salinity >10 ppt and 2-6 times under a BRT/HRT ratio >5.5. Whereas, organic matter treatment seems not to be affected when the removal rate was maintained at 28-34 gCOD m -3 d -1 under various conditions.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE