Performance Analysis of a Repetition Cat Code Architecture: Computing 256-bit Elliptic Curve Logarithm in 9 Hours with 126 133 Cat Qubits.

Autor: Gouzien É; Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191 Gif-sur-Yvette, France., Ruiz D; Alice & Bob, 53 boulevard du Général Martial Valin, 75015 Paris, France.; Laboratoire de Physique de l'École normale supérieure, École normale supérieure, Mines Paris, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris, France., Le Régent FM; Alice & Bob, 53 boulevard du Général Martial Valin, 75015 Paris, France.; Laboratoire de Physique de l'École normale supérieure, École normale supérieure, Mines Paris, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris, France., Guillaud J; Alice & Bob, 53 boulevard du Général Martial Valin, 75015 Paris, France., Sangouard N; Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191 Gif-sur-Yvette, France.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2023 Jul 28; Vol. 131 (4), pp. 040602.
DOI: 10.1103/PhysRevLett.131.040602
Abstrakt: Cat qubits provide appealing building blocks for quantum computing. They exhibit a tunable noise bias yielding an exponential suppression of bit flips with the average photon number and a protection against the remaining phase errors can be ensured by a simple repetition code. We here quantify the cost of a repetition code and provide valuable guidance for the choice of a large scale architecture using cat qubits by realizing a performance analysis based on the computation of discrete logarithms on an elliptic curve with Shor's algorithm. By focusing on a 2D grid of cat qubits with neighboring connectivity, we propose to implement 2-qubit gates via lattice surgery and Toffoli gates with off-line fault-tolerant preparation of magic states through projective measurements and subsequent gate teleportations. All-to-all connectivity between logical qubits is ensured by routing qubits. Assuming a ratio between single- and two-photon losses of 10^{-5} and a cycle time of 500 ns, we show concretely that such an architecture can compute a 256-bit elliptic curve logarithm in 9 h with 126 133 cat qubits and on average 19 photons by cat state. We give the details of the realization of Shor's algorithm so that the proposed performance analysis can be easily reused to guide the choice of architecture for others platforms.
Databáze: MEDLINE