Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from Methylopila sp. M107 and its broad metal selectivity.

Autor: Xiao Y; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Wu K; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Batool SS; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Wang Q; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Chen H; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Zhai X; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Yu Z; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.; Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China., Huang J; Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.; Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
Jazyk: angličtina
Zdroj: Frontiers in microbiology [Front Microbiol] 2023 Jul 25; Vol. 14, pp. 1191436. Date of Electronic Publication: 2023 Jul 25 (Print Publication: 2023).
DOI: 10.3389/fmicb.2023.1191436
Abstrakt: As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca 2+ )-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the K m value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K + ) and calcium (Ca 2+ ), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca 2+ -dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Xiao, Wu, Batool, Wang, Chen, Zhai, Yu and Huang.)
Databáze: MEDLINE