Road map for clinicians to develop and evaluate AI predictive models to inform clinical decision-making.
Autor: | Hassan N; School of Pharmacy, Newcastle University School of Pharmacy, Newcastle Upon Tyne, UK.; Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK., Slight R; Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK., Morgan G; School of Computing, Newcastle University, Newcastle upon Tyne, UK., Bates DW; Department of General Internal Medicine, Harvard Medical School, Boston, Massachusetts, USA., Gallier S; PIONEER Health Data Research Hub, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.; Department of Health Informatics, PIONEER Health Data Research Hub, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK., Sapey E; PIONEER Health Data Research Hub, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.; Department of Health Informatics, PIONEER Health Data Research Hub, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK., Slight S; School of Pharmacy, Newcastle University School of Pharmacy, Newcastle Upon Tyne, UK Sarah.Slight@newcastle.ac.uk.; Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK. |
---|---|
Jazyk: | angličtina |
Zdroj: | BMJ health & care informatics [BMJ Health Care Inform] 2023 Aug; Vol. 30 (1). |
DOI: | 10.1136/bmjhci-2023-100784 |
Abstrakt: | Background: Predictive models have been used in clinical care for decades. They can determine the risk of a patient developing a particular condition or complication and inform the shared decision-making process. Developing artificial intelligence (AI) predictive models for use in clinical practice is challenging; even if they have good predictive performance, this does not guarantee that they will be used or enhance decision-making. We describe nine stages of developing and evaluating a predictive AI model, recognising the challenges that clinicians might face at each stage and providing practical tips to help manage them. Findings: The nine stages included clarifying the clinical question or outcome(s) of interest (output), identifying appropriate predictors (features selection), choosing relevant datasets, developing the AI predictive model, validating and testing the developed model, presenting and interpreting the model prediction(s), licensing and maintaining the AI predictive model and evaluating the impact of the AI predictive model. The introduction of an AI prediction model into clinical practice usually consists of multiple interacting components, including the accuracy of the model predictions, physician and patient understanding and use of these probabilities, expected effectiveness of subsequent actions or interventions and adherence to these. Much of the difference in whether benefits are realised relates to whether the predictions are given to clinicians in a timely way that enables them to take an appropriate action. Conclusion: The downstream effects on processes and outcomes of AI prediction models vary widely, and it is essential to evaluate the use in clinical practice using an appropriate study design. Competing Interests: Competing interests: None declared. (© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.) |
Databáze: | MEDLINE |
Externí odkaz: |