Autor: |
Anjos IVD; Doctoral Program in Biotechnology and Biodiversity, Pro-Midwest Network, Cáceres 78210-778, Brazil., Ali M; Institute of Biological Sciences, University of Talca, Talca 3460000, Chile., Mora-Poblete F; Institute of Biological Sciences, University of Talca, Talca 3460000, Chile., Araujo KL; Doctoral Program in Biotechnology and Biodiversity, Pro-Midwest Network, Cáceres 78210-778, Brazil., Gilio TAS; Doctoral Program in Biotechnology and Biodiversity, Pro-Midwest Network, Cáceres 78210-778, Brazil.; Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil., Neves LG; Doctoral Program in Biotechnology and Biodiversity, Pro-Midwest Network, Cáceres 78210-778, Brazil.; Faculty of Agricultural and Biological Sciences, State University of Mato Grosso, Cáceres 78210-778, Brazil. |
Abstrakt: |
Tectona grandis Linn., also known as teak, is a highly valued species with adaptability to a wide range of climatic conditions and high tolerance to soil variations, making it an attractive option for both commercial and conservation purposes. In this sense, the classification of cultivated teak genotypes is crucial for both breeding programs and conservation efforts. This study examined the relationship between traits related to damage in the stem of teak plants caused by Ceratocystis fimbriata (a soil-borne pathogen that negatively impacts the productivity of teak plantations) and the spectral reflectance of 110 diverse clones, using near-infrared spectroscopy (NIRS) data and partial least squares regression (PLSR) analysis. Cross-validation models had R 2 = 0.894 (ratio of standard error of prediction to standard deviation: RPD = 3.1), R 2 = 0.883 (RPD = 2.7), and R 2 = 0.893 (RPD = 2.8) for predicting stem lesion area, lesion length, and severity of infection, respectively. Teak genotypes (clones) can benefit from the creation of a calibration model utilizing NIRS-generated data paired with PLSR, which can effectively screen the magnitude of damage caused by the fungus. Overall, while the study provides valuable information for teak breeding and conservation efforts, a long-term perspective would be essential to evaluate the sustainability of teak genotypes over various growth stages and under continuous pathogen pressure. |