Autor: |
Hernández-Juárez C; Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria. Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico., Morales-Villafaña G; Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico., López-Casillas F; Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico., Jiménez-Sánchez A; Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria. Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico. |
Abstrakt: |
Lipid droplets (LDs) are intracellular organelles found in most cell types from adipocytes to cancer cells. Although recent investigations have implicated LDs in numerous diseases, the current available methods to monitor them in vertebrate models rely on static imaging using fluorescent dyes, limiting the investigation of their rapid in vivo dynamics. Here, we report a fluorophore chemistry approach to enable in vivo LD dynamic monitoring using a Nernstian partitioning mechanism. Interestingly, the effect of atorvastatin and osmotic treatments toward LDs revealed an unprecedented dynamic enhancement. Then, using a designed molecular probe with an optimized response to hydration and LD dynamics applied to Zebrafish developing pericardial and yolk-sac edema, which represents a tractable model of a human cardiovascular disease, we also provide a unique dual method to detect disease evolution and recovery. |