Lithospheric structural dynamics and geothermal modeling of the Western Arabian Shield.
Autor: | Melouah O; Earth and Space Sciences Department, Faculty of Hydrocarbons, Renewable Energy and Earth and Space Sciences, University Kasdi Merbah Ouargla, 30000, Ouargla, Algeria., Ebong ED; Applied Geophysics Programme, Department of Physics, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria., Abdelrahman K; Department of Geology & Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia., Eldosouky AM; Geology Department, Faculty of Science, Suez University, Suez, 43518, Egypt. dr_a.eldosoky@yahoo.com.; Academy of Scientific Research & Technology, Cairo, Egypt. dr_a.eldosoky@yahoo.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2023 Jul 20; Vol. 13 (1), pp. 11764. Date of Electronic Publication: 2023 Jul 20. |
DOI: | 10.1038/s41598-023-38321-4 |
Abstrakt: | Understanding the dynamics of suturing and cratonisation and their implications are vital in estimating the link between the lithospheric mantle architecture and geothermal resources. We propose new interpretations of the Western Arabian Shield's geodynamic styles and geothermal anomalies. In this work, features of the crust and mantle were interpreted from geophysical modeling to unravel the structural dynamics between the Arabian Shield and the Red Sea rift, as well as the influence of these mechanisms on the uplift of the Cenozoic basalts. Estimates of the lower crust thermal properties were also achieved. Spectral properties of the potential field were used to define the Curie isotherm, heat fluxes, geothermal gradients, radiogenic heat production, Moho configuration, and lithosphere-asthenosphere boundary. Results show new structural styles, micro-sutures, and significant thermal anomalies. The defined geothermal patterns were inferred to be due to localized initiation of tectonic and asthenospheric disequilibrium during the rifting episodes within the Red Sea. Also, magma mixing is initiated by the northward migration of magma from the Afar plume towards the Western Arabian Shield which drives local mantle melts beneath the western Arabia, thereby providing the pressure field required for magma ascent. The ascendant magma flow provides the heating source of geothermal reservoirs within the Western Arabian Shield. However, there are indications that during the episodes of rifting within the Red Sea and/or ancient Pan-African activities, the mixing process may have been altered resulting in crustal thinning and creating pathways of ascendant magma flow along the MMN volcanic line. Integrating geophysical and geothermal models indicated new zones of suturing and extensional tectonics between the amalgamated terranes. The geodynamic interpretation shows a new redistribution of terranes and continuous compressional and transtentional movements within the Arabian Shield. (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |