Phase behaviour of coarse-grained fluids.

Autor: Sokhan VP; Scientific Computing Department, Science and Technology Facilities Council, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK. vlad.sokhan@stfc.ac.uk., Seaton MA; Scientific Computing Department, Science and Technology Facilities Council, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK. vlad.sokhan@stfc.ac.uk., Todorov IT; Scientific Computing Department, Science and Technology Facilities Council, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK. vlad.sokhan@stfc.ac.uk.
Jazyk: angličtina
Zdroj: Soft matter [Soft Matter] 2023 Aug 02; Vol. 19 (30), pp. 5824-5834. Date of Electronic Publication: 2023 Aug 02.
DOI: 10.1039/d3sm00835e
Abstrakt: Soft condensed matter structures often challenge us with complex many-body phenomena governed by collective modes spanning wide spatial and temporal domains. In order to successfully tackle such problems, mesoscopic coarse-grained (CG) statistical models are being developed, providing a dramatic reduction in computational complexity. CG models provide an intermediate step in the complex statistical framework of linking the thermodynamics of condensed phases with the properties of their constituent atoms and molecules. These allow us to offload part of the problem to the CG model itself and reformulate the remainder in terms of reduced CG phase space. However, such exchange of pawns to chess pieces, or 'Hamiltonian renormalization', is a radical step and the thermodynamics of the primary atomic and CG models could be quite distinct. Here, we present a comprehensive study of the phase diagram including binodal and interfacial properties of a dissipative particle dynamics (DPD) model, extended to include finite-range attraction to support the liquid-gas equilibrium. Despite the similarities with the atomic model potentials, its phase envelope is markedly different featuring several anomalies such as an unusually broad liquid range, change in concavity of the liquid coexistence branch with variation of the model parameters, volume contraction on fusion, temperature of maximum density in the liquid phase and negative thermal expansion in the solid phase. These results provide new insight into the connection between simple potential models and complex emergent condensed matter phenomena.
Databáze: MEDLINE